Analysis of Integrated Cross Sections and Spin Asymmetries for the Electron-Impact Ionization of One- and Two-Electron Atomic Systems

  • J. Berakdar
  • S. J. Buckman
  • P. F. O’Mahony
  • F. Mota-Furtado
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

A feature inherent to the motion of two electrons in a nuclear field is the threshold be­haviour of the total cross section for the ejection of one electron from a hydrogenic target upon electron impact.

Keywords

Nuclear Charge Integrate Cross Section Spin Asymmetry Nuclear Field Outgoing Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Wannier Phys.Rev. 90, 817 (1953).Google Scholar
  2. [2]
    R.K. Peterkop J.Phys.B. 4, 513 (1971).Google Scholar
  3. [3]
    S. Cvejanovié and F.H. Read, J.Phys.B 7, 1841 (1974).ADSCrossRefGoogle Scholar
  4. [4]
    F.H. Read in T.D. Märk and G.H. Dunn ed. (1984) Electron Impact Ionisation ( New York: Springer )Google Scholar
  5. [5]
    A.R.P. Rau Phys.Rev.A 4, 207 (1971).Google Scholar
  6. [6]
    H. Klar and W.Schlecht J.Phys.B 9, 1699 (1976).Google Scholar
  7. [7]
    H. Klar J.Phys.B. 14, 3255 (1981).Google Scholar
  8. [8]
    A.R.P. Rau Phys.Rep. 110, 369 (1984).Google Scholar
  9. [9]
    J.M. Feagin J.Phys.B. 17, 2433 (1984).Google Scholar
  10. [10]
    K. Kossmann, V. Schmidt and T. Andersen Phys.Rev.Lett 60. 1266 (1988).Google Scholar
  11. [11]
    P. Lablanquie, K. Ito, P. Morin, I. Nenner and J.H.D. Eland Z.Phys.D. 16, 77 (1990).Google Scholar
  12. [12]
    J-M. Rost J.Phys.B. 28 3003 (1995).Google Scholar
  13. [13]
    J.H. Macek and S.Yu. Ovchinnikov Phys.Rev.Lett. 74, 4631 (1995).Google Scholar
  14. [14]
    C.H. Greene and A.R.P. Rau Phys.Rev.Lett. 48, 533 (1982).Google Scholar
  15. [15]
    I. Bray and A.T. Stelbovics, Phys.Rev.Lett. 70, 746 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    X.Q. Guo, D.M. Crowe, M.S. Lubell, F.C. Tang, A. Vasilakis, J. Slevin and M. Eminyan Phys.Rev.Lett. 15, 1857 (1990).Google Scholar
  17. [17]
    G. Baum, M. Moede, W. Raith and W. Schröder J.Phys.B 18, 531 (1985).ADSCrossRefGoogle Scholar
  18. [18]
    S. Cvejanovié, R.C. Shiell and T. J. Reddish J.Phys.B. 28, L707 (1995).Google Scholar
  19. [19]
    J. Berakdar Aust.J.Phys. 49, 1095 (1996)Google Scholar
  20. [20]
    G.D. Fletcher, M.J. Alguard, T.J. Gay, V.W. Hughes, P.F. Wainwright, M.S. Lubell and W. Raith Phys.Rev.A 31, 2854 (1985).Google Scholar
  21. [21]
    D.M. Crowe, X.Q. Guo, M.S. Lubell, J. Slevin and M. Eminyan J.Phys.B. 23, L325 (1990).Google Scholar
  22. [22]
    J. Berakdar and S.J. Buckman Phys. Rev. A 54, 5431 (1996).Google Scholar
  23. [23]
    J. Berakdar, P.F. O’Mahony and E Mota-Fortado Z. Phys. D in press (1996).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Berakdar
    • 1
  • S. J. Buckman
    • 1
  • P. F. O’Mahony
    • 2
  • F. Mota-Furtado
    • 2
  1. 1.Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia
  2. 2.Department of Mathematics, Royal HollowayUniversity of LondonEgham, SurreyUK

Personalised recommendations