The Normalisation of the Experimental Triple Differential Cross Section of Noble Gas Atoms in Extreme Asymmetric Geometry

  • J. Rasch
  • Colm T. Whelan
  • R. J. Allan
  • H. R. J. Walters
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Electron-electron coincidence experiments, usually known as (e,2e) experiments, are the most powerful tool to study the process of the electron impact ionizationl,2. Despite the extended activity in the field in the last years, the understanding of the process for targets heavier than H and He still presents many serious challenges for both, theoreticians and experimentalists alike. As far as the experiments are concerned, the challenge consists in (a) providing a large body of experimental data to explore the various zones of the Bethe surface3, (b) determining the absolute scale of the triple differential cross-section (TDCS).

Keywords

Fast Electron Absolute Scale Distorted Wave Photoionization Cross Section Distort Wave Bear Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Stefani, L. Avaldi, and R. Camilloni. J. Physique, C: 6 - 1, 1993.Google Scholar
  2. 2.
    Colm T. Whelan, R. J. Allan, H. R. J. Walters, and X. Zhang. (e,2e), effective charges, distorted waves and all that! In Colm T. Whelan, H. R. J. Walters, A. Lahmam-Bennani, and H. Ehrhardt, editors, (e,2e) and related processes, page 1. Kluwer Academic Publisher, 1993.Google Scholar
  3. 3.
    Mitio Inokuti. inelastic collisions of fast charged particles with atoms and molecules - the bethe theory revisited. Rev. Mod. Phys., 43: 297, 1971.CrossRefGoogle Scholar
  4. 4.
    A. Lahmam-Bennani, M. Cherid, and A. Duguet. A critical evaluation of the various methods for absolute scale determination in (e,2e) experiments. J. Phys. B, 20: 2531, 1987.ADSCrossRefGoogle Scholar
  5. 5.
    K. Jung, R. Müller-Fiedler, P. Schlemmer, H. Ehrhardt, and H. Klar. Absolute triple differential cross sections of electron impact ionisation of helium at 600ev collision energy. J. Phys. B, 18: 2955, 1985.ADSCrossRefGoogle Scholar
  6. 6.
    E. Fainelli, R. Camilloni, G. Petrocclli, and G. Stefani. Nuovo Cimento D, 9: 33, 1987.ADSCrossRefGoogle Scholar
  7. 7.
    L. Avaldi, R. Camilloni, R. Multari, G. Stefani, X. Zhang, H. R. J. Walters, and Colm T. Whelan. Phys. Rev. A, 48: 1195, 1993.ADSCrossRefGoogle Scholar
  8. 8.
    G. Stefani, R. Camilloni, and A. Giardini-Guidoni. Phys. Lett., 64A: 364, 1978.CrossRefGoogle Scholar
  9. 9.
    A. Lahmam-Bcnnani, H. F. Wellestein, A. Duguet, and M. Lecas. Rev. Sci. lnstrum., 56: 43, 1985.ADSCrossRefGoogle Scholar
  10. 10.
    Y.-K. Kim. Phys. Rev. A. 28: 656, 1983.Google Scholar
  11. 11.
    N. Lassettre, Edwin, Ausma Skerbele, and Michael A. Dillon. Generalized Oscillator Strength forGoogle Scholar
  12. 1~.
    S 2tP transition of helium. Theory of limiting oscillator strengths. J. Chest. Phys.,50:1829, 1969.Google Scholar
  13. 12.
    B.H. Bransden and C. J. Joachain. Physics of atoms and molecules. Longman, London and New York, 1983.Google Scholar
  14. 13.
    J. Rasch. (e,2e) processes with neutral atom targets. PhD thesis, University of Cambridge, 1996.Google Scholar
  15. 14.
    S.J. Ward and J.H. Macek. Wave functions for contiuum states of charged fragments. Phys. Rev. A, 49, 1994.Google Scholar
  16. 15.
    Colm T. Whelan, R. J. Allan, J. Rasch, H. R. J. Walters, X. Zhang, J. Röder, K. Jung, and H. Ehrhardt. Coulomb three-body effects in (e,2e) collisions: The ionization of H in coplanar symmetric geometry. Phys. Rev. A, 50: 4394, 1994.Google Scholar
  17. 16.
    J. Röder, J. Rasch, K. Jung, Colm T. Whelan, H. Ehrhardt, R. J. Allan, and H. R. J. Walters. Coulomb three-body effects in low energy impact ionisation of H(1 s). Phys. Rev. A, 53: 225, 1996.Google Scholar
  18. 17.
    J. Rasch and Colm T. Whelan. On the numerical evaluation of a class of integrals occuring in scattering problems. Comp. Phys. Commun., in press,1996.Google Scholar
  19. 18.
    Colm T. Whelan. On the Bethe approximation to the reactance matrix. J. Phys. B, 26: 2343, 1985.Google Scholar
  20. 19.
    Clementi and Roetti. Roothan-hartree-fock atomic wavefunctions. Atomic Data and Nuclear Data Tables, 14: 177, 1974.ADSCrossRefGoogle Scholar
  21. 20.
    Anders Fahlman, Manfred O. Krause, Thomas A. Carlson, and Agneta Svensson. Xe 5s,5p correlation satellites in the region of strong interchannel interactions, 28-75 eV. Phys. Rev A, 30: 812, 1984.ADSCrossRefGoogle Scholar
  22. 21.
    S. Aksela, H. Aksela, M. Levasalmi, K. H. Tan, and G. M. Bancroft. partial photoionization cross sections of kr 3d, 4s, and 4p levels in the photon energy range 37-160 ev. Phys. Rev. A, 36: 3449, 1987.ADSCrossRefGoogle Scholar
  23. 22.
    Manfred O. Krause, Thomas A. Carlson, and Pamela R. Woodruff. Angular distribution of photoelectrons of Xe 5p spin-orbit components between 20 and 105 eV. Phys. Rev. A, 24: 1374, 1981.Google Scholar
  24. 23.
    S. H. Southworth, P. H. Kobrin, C. M. Truesdale, D. Lindle, S. Owaki, and D. A. Shirley. Photoelectron and Auger electron asymmetries: alignment of Xe+2 D5/2 by phototionization. Phys. Rev. A, 24: 2257, 1981.ADSCrossRefGoogle Scholar
  25. 24.
    William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in Fortran. Cambridge University Press, 1992.Google Scholar
  26. 25.
    H. Klar, K. Jung, and H. Ehrhardt. Electron-impact ionization of helium by fast electrons at small momentum transfer: A quantum-defect analysis of experimental data. Phys. Rev. A, 29: 405, 1984.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Rasch
    • 1
  • Colm T. Whelan
    • 1
  • R. J. Allan
    • 2
  • H. R. J. Walters
    • 3
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeEngland
  2. 2.Daresbury LaboratoryWarringtonEngland
  3. 3.Department of Applied Mathematics and Theoretical PhysicsThe Queen’s University of BelfastBelfastEngland

Personalised recommendations