Advertisement

Energy Distribution of Correlated Electron Pairs Excited by Low Energy Electrons from W(001) Measured by a Time-Of-Flight (e,2e) Spectrometer

  • S. N. Samarin
  • O. M. Artamonov
  • H. Schwabe
  • J. Kirschner
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Over the last twenty years the (e,2e) spectroscopy was evolved as a tool for studying the electronic structure of solids1,2,2 and scattering dynamics of fast electrons on solid targets 4,5,6 All these works were done in the transmission mode using high energy incident electrons. The fast electron knocks out a target electron, then scattered and ejected electrons are detected in coincidence. In this geometry the scattering problem is kinematically complete: energy E0 and momentum q o of the incident electron are known and energies E1, E2 and momenta q 1,q 2 of both time correlated electrons are measured.

Keywords

Correlate Pair Correlate Electron Incident Electron Incident Electron Beam Reflection Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.G. Levin, V.G. Neudachin, and Yu.F. Smirnov, On investigation of the structure of energy bands using quasielastic knock-out of an electron by an electron (e,2e), Phys. Stat. Sol. (b) 49: 489 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    M. Vos and I.E. McCarthy, Observing electron motion in solids, Rev. of Modern Phys. 67, N3: 713 (1995).Google Scholar
  3. 3.
    Y.Q. Cai, M. Vos, P. Storer, A.S. Kheifets, I.E. McCarthy and E. Weigold, Direct imaging of the valence electronic structure of solid by (e,2e) spectroscopy, Solid State Communs. 95, N1: 25 (1995).Google Scholar
  4. 4.
    Jeff Drucker, M.R. Scheinfein, J. Liu and J.K. Weiss, Electron coincidence spectroscopy studies of secondary and Auger electron generation mechanisms, J. Appl. Phys. 74 (12): 7329 (1993).ADSCrossRefGoogle Scholar
  5. 5.
    M.R. Scheinfein, Jeff Drucker and J.K. Weiss, Secondary-electron production pathways determined by coincidence electron spectroscopy, Phys. Rev. B47, N7:4068 (1993I).Google Scholar
  6. 6.
    Jeff Drucker, M.R. Scheinfein, Delocalized secondary-electron generation studied by momentum-resolved coincidence-electron spectroscopy, Phys. Rev. B47, N23:15973 (1993-I).Google Scholar
  7. 7.
    J. Kirschner, O.M. Artamonov and A.N. Terekhov, Two-electron coincidence spectroscopy of scattering events at surfaces, Phys. Rev. Lett. 69: 1711 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    O.M. Artamonov, S.N. Samarin and J. Kirschner, Coincidence electron spectroscopy of W(100) in the threshold-energy region, Phys. Rev. B51: 2491 (1995).CrossRefGoogle Scholar
  9. 9.
    J. Kirschner, O.M. Artamonov and S.N. Samarin, Angle resolved energy correlated coincidence electron spectroscopy of solid surfaces Phys. Rev. Lett. 75: 2424 (1995).Google Scholar
  10. 10.
    S. Iacobucci, L. Marassi, R. Camilloni, S. Nannarone, G. Stefani, Reflection (e,2e) spectroscopy on surfaces, Phys.Rev. B51, N15: 10252 (1995-I).Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • S. N. Samarin
    • 1
  • O. M. Artamonov
    • 1
  • H. Schwabe
    • 1
  • J. Kirschner
    • 1
  1. 1.Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2HalleGermany

Personalised recommendations