Skip to main content

Spin-Related Effects in III-V Semiconductors

  • Chapter
Coherent Optical Interactions in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 330))

Abstract

For many purposes we can ignore the spin of electrons and holes in semiconductors. Thus an exciton in GaAs is often treated as a two level system although in reality the 1s orbital level of the electron and hole consists of several different states corresponding to different orientations of the spins of the particles. The degeneracy of the spin states can be removed by spin-orbit interaction, by low symmetry crystal fields, by exchange interactions and by applied magnetic fields. Clearly this fine structure needs to be considered in the context of coherent optical phenomena since spin reorientation may be significant for optical dephasing and splittings can give rise to quantum beating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example: C. Weisbuch and C. Hermann, Phys.Rev. B15 816 (1977).

    ADS  Google Scholar 

  2. C. Hermann and C. Weisbuch, Phys.Rev. B15 823 (1977).

    ADS  Google Scholar 

  3. E.D. Palik, G.S. Picus, S. Teitler and R.F. Wallis, Phys.Rev. 122 475 (1961).

    Article  ADS  Google Scholar 

  4. D.C. Rogers, J. Singleton, R.J. Nicholas, C.T. Foxon and K. Woodbridge, Phys Rev B34 4002 (1986).

    ADS  Google Scholar 

  5. J. Singleton, R.J. Nicholas, D.C. Rogers and C.T.B. Foxon, Surf. Sci. 196 429 (1988).

    Article  ADS  Google Scholar 

  6. See for example: A.S. Plaut, J. Singleton, R.J. Nicholas, R.T. Harley, S.R. Andrews and C.T.B. Foxon, Phys.Rev. B38 1323 (1988).

    ADS  Google Scholar 

  7. K. Cho, S. Suga, W. Dreybrodt and F. Willmann, Phys.Rev. B11 1512 (1975).

    ADS  Google Scholar 

  8. L.C. Andreani, F. Bassani and A. Quattropani, Il Nuovo Cimento 10D 1473 (1988).

    Article  ADS  Google Scholar 

  9. L.C. Andreani and F. Bassani, Phys.Rev. B41 7536 (1990).

    ADS  Google Scholar 

  10. U. Rossler, S. Jorda and D. Broido, Solid State Commun. 73 209 (1990).

    Article  ADS  Google Scholar 

  11. W. Ekardt, K. Lösch and D. Bimberg, Phys.Rev. B20 3303 (1979).

    ADS  Google Scholar 

  12. H.W. van Kesteren, E.C. Cosman, W.A.J.A. van der Poel and C.T. Foxon, Phys.Rev. B41 5283 (1990).

    ADS  Google Scholar 

  13. M.Z. Maialle, E.A. de Andrada e Silva and L.J. Sham, Phys.Rev. (to be published).

    Google Scholar 

  14. This point has been addressed by V.K. Kalevich and V.L. Korenev JETP Lett. 56 253 (1992).

    ADS  Google Scholar 

  15. G. Hendorfer and J. Schneider, Semicond.Sci.Technol. 6 595 (1991).

    Article  ADS  Google Scholar 

  16. Optical Orientation, edited by F. Meier and B.P. Zakharchenya, (North Holland, Amsterdam, 1984).

    Google Scholar 

  17. M.J. Snelling, G.P. Flinn, A.S. Plaut, R.T. Harley, A.C. Tropper, R. Eccleston and C.C. Phillips, Phys.Rev. B44 11345 (1991).

    ADS  Google Scholar 

  18. M.J. Snelling, E. Blackwood, C.J. McDonagh, R.T. Harley and C.T.B. Foxon, Phys.Rev. B45 3922 (1992).

    ADS  Google Scholar 

  19. M. Dobers, K. von Klitzing and G. Weimann, Phys.Rev. B38 5453 (1988).

    ADS  Google Scholar 

  20. J.M. Trombetta, T.A. Kennedy, W. Tseng and D. Gammon, Phys.Rev. B43 2458 (1991).

    ADS  Google Scholar 

  21. B. Rejaei Salmassi and G.E.W. Bauer, Phys.Rev. B39 1970 (1989).

    ADS  Google Scholar 

  22. D.D. Sell, S.E. Stokowski, R. Dingle and J.V. Di Lorenzo, Phys.Rev. B7 4568 (1973).

    ADS  Google Scholar 

  23. S.B. Nam, D.C. Reynolds, C.W. Litton, R.J. Almassy, T.C. Collins and C.W. Wolfe, Phys.Rev. B13 761 (1976).

    ADS  Google Scholar 

  24. M. Suffizynski, J.Phys. C8 L400 (1975).

    ADS  Google Scholar 

  25. W. Ossau, B. Jäkel, E. Bangert and G. Weimann, NATO Advanced Study Institutes Ser.B. Vol. 183 (Plenum, New York, 1988) p.285.

    Google Scholar 

  26. G.E.W. Bauer and T. Ando, Phys.Rev. B37 3130 (1988).

    ADS  Google Scholar 

  27. E. Blackwood, PhD Thesis 1993 (Southampton University, Unpublished).

    Google Scholar 

  28. M.J. Snelling, PhD Thesis 1991 (Southampton University, Unpublished).

    Google Scholar 

  29. S.R. Andrews, Private Communication.

    Google Scholar 

  30. As used in experiments by: S. Bar-Ad and I. Bar-Joseph, Phys.Rev.Lett. 66 249 (1991).

    Article  ADS  Google Scholar 

  31. This point is discussed in: T. Uenoyama and L.J. Sham, Phys.Rev.Lett. 64 3030 (1990).

    Article  ADS  Google Scholar 

  32. For example, T.C. Damen, L. Vina, J.E. Cunningham, J. Shah and LJ. Sham, Phys.Rev.Lett. 24 3432 (1991).

    Article  ADS  Google Scholar 

  33. S. Bar-Ad and I. Bar-Joseph, Phys.Rev.Lett. 68 349 (1992).

    Article  ADS  Google Scholar 

  34. A. Vinattieri, J. Shah, T.C. Damen, D.S. Kim, L.N. Pfeiffer and L.J. Sham (preprint).

    Google Scholar 

  35. M.I. D’yakanov and V. Yu. Kacharovskii, Sov.Phys.Semicond. 20 110 (1986).

    Google Scholar 

  36. G. Bastard and R. Ferreira, Surface Science 267 335 (1992).

    Article  ADS  Google Scholar 

  37. G. Fishman and G. Lampel, Phys.Rev. B16 820 (1977).

    ADS  Google Scholar 

  38. A.H. Clark, R.D. Burnham, D.J. Chadi and R.M. White, Phys.Rev. B12 5758 (1975).

    ADS  Google Scholar 

  39. W.A.J.A. van der Poel, A.L.G.J. Severens, H.W. van Kesteren and C.T. Foxon, Superlattices and Microstructures, 5 115 (1989).

    Article  ADS  Google Scholar 

  40. J. Wagner, H. Schneider, D. Richards, A. Fischer and K. Ploog, Phys.Rev. B47 4786 (1993).

    ADS  Google Scholar 

  41. A.N. Titkov, V.I. Safarov and G. Lampel, Proc.14th Int.Conf.of the Physics of Semiconductors, Edinburgh 1978 (Conference Series No.43, The Institute of Physics, Bristol) ed. B.L.H. Wilson p. 1031; Also see reference 10 p. 73.

    Google Scholar 

  42. Ph. Rhoussingnol, P. Polland, R. Ferreira, C. Delalande, G. Bastard, A. Vinattieri, J. Martinez-Pastor, L. Carraresi, M. Colocci, J.F. Palmier and B. Etienne, Phys.Rev. B46 7292 (1992).

    ADS  Google Scholar 

  43. R. Ferreira and G. Bastard, Phys.Rev. B43 9687 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harley, R.T. (1994). Spin-Related Effects in III-V Semiconductors. In: Phillips, R.T. (eds) Coherent Optical Interactions in Semiconductors. NATO ASI Series, vol 330. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9748-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9748-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9750-3

  • Online ISBN: 978-1-4757-9748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics