Bloch Oscillations in Superlattices

  • P. Leisching
  • C. Waschke
  • P. Haring Bolivar
  • W. Beck
  • H. Roskos
  • K. Leo
  • H. Kurz
  • K. Köhler
  • P. Ganser
Part of the NATO ASI Series book series (NSSB, volume 330)

Abstract

Semiconductor superlattices (SL) have recently gained much attention as a model system for the investigation of the electronic states in a periodic potential (Bloch states) [1]. As an example, the Wannier-Stark ladder (WSL) [2] has been observed by cw optical techniques in semiconductor SL several years ago [3,4]: The extended Bloch states become localized due to the field F, which transforms the continuous energy miniband into evenly spaced ladder states with energies En=E0+nΔE, where ΔE=eFd (d: lattice constant) [5]. This WSL behavior is, albeit with some qualitative changes, also observed when the excitonic correlation of photo-excited eh pairs is considered [6]. There is only one condition due to the excitonic behavior imposed to the miniband width: the bandwidth needs to be larger than the exciton binding energy (5–10 meV) [7]. Recently, the interest has focussed [8,9,10] on the time-domain equivalent of the WSL, the periodic motion of Bloch electrons in an homogeneous electric field (Bloch oscillations, BO [11]). A simple semiclassical description is frequently given in literature [12]: Without scattering, electrons will accelerate in the electric field till they reach the upper edge of the band at the end of the Brillouin zone. There, they will be reflected and return to the initial state. These oscillations in the Brillouin zone have a period τB=h/eFd. More recently, several groups [5,13,14,15] have modeled the BO in a fully quantum-mechanical picture and shown that the essential features of the simple picture outlined above are preserved, e.g., the field-dependence of the oscillation frequency. Recent numerical calculations for realistic initial superposition of WSL states [14] predict the existence of an oscillating dipole moment, which is a prerequisite for the observation of strong THz emission.

Keywords

Reverse Bias Energy Splitting Quantum Beat Electromagnetic Transient Bloch Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).CrossRefGoogle Scholar
  2. 2.
    G.H. Wannier, Rev. Mod. Phys. 34, 645 (1962).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    E.E. Mendez, F. Agulló-Rueda, and J.M. Hong, Phys. Rev. Lett. 60, 2426 (1988).ADSCrossRefGoogle Scholar
  4. 4.
    P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and A. Regreny, Phys. Rev. Lett. 61, 1639 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    G. Bastard and R. Ferreira, in Spectroscopy of Semiconductor Microstructures, NATO ASI Series (Plenum Press, New York 1989), p.333.CrossRefGoogle Scholar
  6. 6.
    M.M. Dignam and J.E. Sipe, Phys. Rev. Lett. 64, 1797 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, W.Y. Jan, Phys. Rev. B 44, 6231 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, S. Schmitt-Rink, T. Meier, G. von Plessen, A. Schulze, and P. Thomas, Phys. Rev. B 46, 7252 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    K. Leo, P. Haring Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84, 943 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    C. Waschke, H.G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys.Rev.Lett. 70, 3319 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    F. Bloch, Z. Phys. 52, 555 (1928).ADSMATHGoogle Scholar
  12. C. Zener, Proc. R. Soc. London A 145, 523 (1934).ADSGoogle Scholar
  13. 12.
    N.W. Ashroft and N.D. Mermin, Solid State Physics 1st, edition, CBS Publishing Asia LTD. (1988), p. 224 and 225.Google Scholar
  14. 13.
    J.B. Krieger and G.J. Iafrate, Phys.Rev. B 33, 5494 (1986).ADSCrossRefGoogle Scholar
  15. 14.
    A.M. Bouchard and M. Luban, Phys. Rev. B 47, 6815 (1993).ADSCrossRefGoogle Scholar
  16. 15.
    G. von Plessen and P. Thomas, Phys.Rev. B 45, 9185 (1992).ADSCrossRefGoogle Scholar
  17. 16.
    T. Yajima and Y. Taira, J. Opt. Soc. Jpn. 47, 1620 (1979).ADSCrossRefGoogle Scholar
  18. 17.
    M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel and P. Thomas, Phys.Rev.Lett. 69, 3631 (1992).ADSCrossRefGoogle Scholar
  19. 18.
    T. Tokizaki, A. Nakamura, Y. Ishida, T. Yaijma, I. Akai and T. Karasawa, Springer Series in Chemical Physics 53, Ultrafast Phenomena VII, Springer Verlag 1990, p. 253.Google Scholar
  20. 19.
    C. Wasche, P. Leisching, P. Haring Boliviar, R. Schwedler, F. Brüggeman, H.R. Roskos, K. Leo, H. Kurz and K. Köhler, to be published in Solid State Electronics.Google Scholar
  21. 20.
    P. Leisching and C. Waschke, et al, in preparation.Google Scholar
  22. 21.
    K. Leo, P. Haring, H.J. Bakker, G. Maidorn, H. Kurz and K. Köhler, XXIth Int. Conf. on the Phys. of Semic., Beijing, 1992, p. 983.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Leisching
    • 1
  • C. Waschke
    • 1
  • P. Haring Bolivar
    • 1
  • W. Beck
    • 1
  • H. Roskos
    • 1
  • K. Leo
    • 1
  • H. Kurz
    • 1
  • K. Köhler
    • 2
  • P. Ganser
    • 2
  1. 1.Institut für Halbleitertechnik IIRWTH AachenAachenGermany
  2. 2.Fraunhofer-Institut IAFFreiburgGermany

Personalised recommendations