# Coherent Excitonic and Free Carrier Dynamics in Bulk GaAs and Heterostructures

## Abstract

Coherent dynamics in atomic and molcular systems has been investigated for a long time. The first spin echo experiment^{1} was performed in 1950 on protons in a water solution of Fe^{+++} ions. Pulses in the radio frequency range were generated by means of a gated oscillator with pulse widths between 20 μs and a few milliseconds. With these pulses dephasing times of the order of 10 ms have been measured. In the 1960s echo experiments were brought into the visible range.^{2,3} A Q-switched ruby laser produced pulses of approximately 10 ns duration which were used to observe photon echoes from ruby. In this case the dephasing times were of the order of 100 ns. For the observation of such coherent dynamics the pulse width has to be shorter than the dephasing time. In semiconductors typical dephasing times are much shorter, they are in the range of a few picoseconds down to some femtoseconds. Therefore, experiments had to wait until the development of suitable lasers which were able to generate sub-picosecond pulses.

## Keywords

Quantum Beat Bulk GaAs Photon Echo Coherent Phonon Dephasing Time## Preview

Unable to display preview. Download preview PDF.

## References

- 1.E. L. Hahn, Spin echoes, Phys. Rev.
**80**, 580 (1950).ADSzbMATHGoogle Scholar - 2.N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Observation of a photon echo, Phys. Rev. Lett.
**13**, 567 (1964).ADSGoogle Scholar - 3.I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Photon echoes, Phys. Rev.
**141**, 391 (1966).ADSGoogle Scholar - 4.J. Shah and R. C. C. Leite, Radiative recombination from photoexcited hot carriers in GaAs, Phys. Rev. Lett.
**22**, 1304 (1969).ADSGoogle Scholar - 5.C. V. Shank, R. L. Fork, R. F. Leheny, and J. Shah, Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution, Phys. Rev. Lett.
**42**, 112 (1979).ADSGoogle Scholar - 6.R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Optics Lett.
**12**, 483 (1987).ADSGoogle Scholar - 7.J. Shah, Photoexcited hot carriers: From cw to 6 fs in 20 years, Solid State Electron.
**32**, 1051 (1989).ADSGoogle Scholar - 8.J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy, Phys. Rev. Lett.
**59**, 2222 (1987).ADSGoogle Scholar - 9.H. J. Polland, W. W. Rühle, H. J. Queisser, and K. Ploog, Fröhlich interaction in two-dimensional GaAs/AlGaAs systems, Phys. Rev. B
**36**, 7722 (1987).ADSGoogle Scholar - 10.K. Leo, W. W. Rühle, H. J. Queisser, and K. Ploog, Reduced dimensionality of hot-carrier relaxation in GaAs quantum wells, Phys. Rev. B
**37**, 7121 (1988).ADSGoogle Scholar - 11.J. F. Ryan and M. Tatham, Picosecond optical studies of 2D electron — 2D phonon dynamics, Solid State Electron.
**32**, 1429 (1989).ADSGoogle Scholar - 12.T. Elsaesser, J. Shah, L. Rota, and P. Lugli, Initial thermalization of photoexcited carriers in GaAs studied by femtosecond luminescence spectroscopy, Phys. Rev. Lett.
**66**, 1757 (1991).ADSGoogle Scholar - 13.L. Rota, P. Lugli, T. Elsaesser, and J. Shah, Ultrafast thermalization of photoexcited carriers in polar semiconductors, Phys. Rev. B
**47**, 4226 (1993).ADSGoogle Scholar - 14.H. Kurz, Femtosecond spectroscopy of hot carrier relaxation in bulk semiconductors, Semicond. Sci.Technol.
**7**, B124 (1992).Google Scholar - 15.R. G. Ulbrich, J. A. Kash, and J. C. Tsang, Hot-electron recombination at neutral acceptors in GaAs: A cw probe of femtosecond intervalley scattering, Phys. Rev. Lett.
**62**, 949 (1989).ADSGoogle Scholar - 16.J. A. Kash, Carrier-carrier scattering in GaAs: Quantitative measurements from hot (e, A
^{0}) luminescence, Phys. Rev. B**40**, 3455 (1989).ADSGoogle Scholar - 17.D. W. Snoke, W. W. Rühle, Y.-C. Lu, and E. Bauser, Nonthermalized distributions of electrons on picosecond time scale in GaAs, Phys. Rev. Lett.
**68**, 990 (1992).ADSGoogle Scholar - 18.C. L. Peterson and S. A. Lyon, Observation of hot-electron energy loss through the emission of phonon-plasmon coupled modes in GaAs, Phys. Rev. Lett.
**65**, 760 (1990).ADSGoogle Scholar - 19.J. L. Oudar, A. Migus, D. Hulin, G. Grillon, J. Etchepare, and A. Antonetti, Femtosecond orientational relaxation of photoexcited carriers in GaAs, Phys. Rev. Lett.
**53**, 384 (1984).ADSGoogle Scholar - 20.H. Roskos, B. Rieck, A. Seilmeier, and W. Kaiser, Carrier cooling in nonpolar semiconductors studied with subpicosecond time-resolution, Solid State Electron.
**32**, 1437 (1989).ADSGoogle Scholar - 21.C. W. W. Bradley, R. A. Taylor, and J. F. Ryan, Femtosecond electron and hole therm alizati on in AlGaAs, Solid State Electron.
**32**, 1173 (1989).ADSGoogle Scholar - 22.T. Gong, P. M. Fauchet, J. F. Young, and P. J. Kelly, Femtosecond gain dynamics due to initial thermalization of hot carriers injected at 2 eV in GaAs, Phys. Rev. B
**44**, 6542 (1991).ADSGoogle Scholar - 23.P. M. Fauchet and T. Gong, Femtosecond dynamics of hot-carriers in GaAs, in
*Ultrafast Lasers Probe Phenomena in Semiconductors and Superconductors*, edited by R. Alfano, SPIE Proc. Vol. 1677 (SPIE, 1992) p. 25.Google Scholar - 24.J.-P. Foing, D. Hulin, M. Joffre, M. K. Jackson, J.-L. Oudar, C. Tanguy, and M. Combescot, Absorption edge singularities in highly excited semiconductors, Phys. Rev. Lett.
**68**, 110 (1992).ADSGoogle Scholar - 25.W. Pötz and P. Kocevar, Electronic power transfer in pulsed laser excitation of polar semiconductors, Phys. Rev. B
**28**, 7040 (1983).ADSGoogle Scholar - 26.T. F. Zheng, W. Cai, P. Hu, and M. Lax, Simulation of ultrafast relaxation of photoexcited electrons via analytical distribution functions, Solid State Electron.
**32**, 1089 (1989).ADSGoogle Scholar - 27.K. Leo and J. H. Collet, Influence of electron-hole scattering on the plasma thermalization in doped GaAs, Phys. Rev. B
**44**, 5535 (1991).ADSGoogle Scholar - 28.A. A. Grinberg and S. Luryi, Nonstationary quasiperiodic energy distribution of an electron gas upon ultrafast thermal excitation, Phys. Rev. Lett.
**65**, 1251 (1990).ADSGoogle Scholar - 29.A. A. Grinberg, S. Luryi, N. L. Schryer, R. K. Smith, C. Lee, U. Ravaioli, and E. Sangiorgi, Adiabatic approach to the dynamics of nonequilibirium electron ensembles in semiconductors, Phys. Rev. B
**44**, 10536 (1991).ADSGoogle Scholar - 30.K. El Sayed, T. Wicht, H. Haug, and L Bányai, Study of the Coulomb Boltzmann kinetics in a quasi-twodimensional electron gas by eigenfunction expansions and Monte Carlo simulations, Z. Phys. B
**86**, 345 (1992).ADSGoogle Scholar - 31.J. Collet and T. Amand, Athermal and thermal relaxation of high density electron-hole plasma in GaAs, Physica
**134B**, 394 (1985).Google Scholar - 32.R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, Carrier-carrier scattering and optical dephasing in highly excited semiconductors, Phys. Rev. B
**45**, 1107 (1992).ADSGoogle Scholar - 33.M. A. Osman and D. K. Ferry, Monte Carlo investigation of the electron-hole-interaction effects on the ultrafast relaxation of hot photoexcited carriers in GaAs, Phys. Rev. B
**36**, 6018 (1987).ADSGoogle Scholar - 34.P. Lugli, P. Bordone, S. Gualdi, P. Poli, and S. M. Goodnick, Hot phonons in quantum well systems, Solid-State Electron.
**32**, 1881 (1989).ADSGoogle Scholar - 35.P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, and S. M. Goodnick, Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation, Phys. Rev. B
**39**, 7852 (1989).ADSGoogle Scholar - 36.C. J. Stanton, D. W. Bailey, and K. Hess, Monte Carlo modeling of femtosecond relaxation processes in AlGaAs/GaAs quantum wells, IEEE J. Quantum Electron.
**QE-24**, 1614 (1988).ADSGoogle Scholar - 37.C. J. Stanton, D. W. Bailey, and K. Hess, Femtosecond pump, continuum probe nonlinear absorption in GaAs, Phys. Rev. Lett.
**65**, 231 (1990).ADSGoogle Scholar - 38.D. W. Bailey, M. A. Artaki, C. J. Stanton, and K. Hess, Ensemble Monte Carlo simulations of femtosecond thermalization of low-energy photoexcited electrons in GaAs quantum wells, J. Appl. Phys.
**62**, 4638 (1987).ADSGoogle Scholar - 39.D. K. Ferry, A. M. Kriman, H. Hida, and S. Yamaguchi, Collision retardation and its role in femtosecond-laser excitation of semiconductor plasmas, Phys. Rev. Lett.
**67**, 633 (1991).ADSGoogle Scholar - 40.D. W. Bailey, C. J. Stanton, and K. Hess, Numerical studies of femtosecond carrier dynamics in GaAs, Phys. Rev. B
**42**, 3423 (1990).ADSGoogle Scholar - 41.U. Hohenester, P. Supancic, P. Kocevar, X. Q. Zhou, W. Kütt, and H. Kurz, Subpicosecond thermaliztion and relaxation of highly photoexcited electrons and holes in intrinsic and p-type gaas and inp, Phys. Rev. B
**47**, 13233 (1993).ADSGoogle Scholar - 42.A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical Stark effect with femtosecond response time, Phys. Rev. Lett.
**56**, 2748 (1986).ADSGoogle Scholar - 43.W. H. Knox, D. S. Chemla, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low-and high-intensity limits, Phys. Rev. Lett.
**1989**, 1189(1989).ADSGoogle Scholar - 44.P. C. Becker, H. L. Fragnito, C. H. Brito Cruz, R. L. Fork, J. E. Cunningham, J. E. Henry, and C. V. Shank, Femtosecond photon echoes from band-to-band transitions in GaAs, Phys. Rev. Lett.
**61**, 1647 (1988).ADSGoogle Scholar - 45.Y. Masumoto, S. Shionoya, and T. Takagahara, Optical dephasing of excitonic polaritons in CuCl studied by time-resolved, nondegenerate four-wave mixing, Phys. Rev. Lett.
**51**, 923 (1983).ADSGoogle Scholar - 46.L. Schultheis, M. D. Sturge, and J. Hegarty, Photon echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells, Appl. Phys. Lett.
**47**, 995 (1985).ADSGoogle Scholar - 47.L. Schultheis, J. Kuhl, A. Honold, and C. W. Tu, Picosecond phase coherence and orientational relaxation of excitons in GaAs, Phys. Rev. Lett.
**57**, 1797 (1986).ADSGoogle Scholar - 48.A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, Reflected degenerate four-wave mixing on GaAs single quantum wells, Appl. Phys. Lett.
**52**, 2105 (1988).ADSGoogle Scholar - 49.J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/AlGaAs quantum wells, Adv. in Solid State Phys.
**29**, 157 (1989).Google Scholar - 50.E. O. Göbel, Ultrafast spectroscopy of semiconductors, Adv. in Solid State Phys.
**30**, 269 (1990).Google Scholar - 51.K. Leo, E. O. Göbel, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, K. Köhler, and P. Ganser, Subpicosecond four-wave mixing in GaAs/AlGaAs quantum wells, Phys. Rev. B
**44**, 5726 (1991).ADSGoogle Scholar - 52.G. Noll, U. Siegner, S. G. Shevel, and E. O. Göbel, Picosecond stimulated photon echo due to intrinsic excitations in semiconductor mixed crystals, Phys. Rev. Lett.
**64**, 792 (1990).ADSGoogle Scholar - 53.D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, and W. von der Osten, Coherent propagation and quantum beats of quadrupole polaritons in CuO, Phys. Rev. Lett.
**67**, 2343 (1991).ADSGoogle Scholar - 54.E. O. Göbel, K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, and K. Köhler, Quantum beats of excitons in quantum wells, Phys. Rev. Lett.
**64**, 1801 (1990).ADSGoogle Scholar - 55.V. Langer, H. Stolz, and W. von der Osten, Observation of quantum beats in the resonance fluorescence of free excitons, Phys. Rev. Lett.
**64**, 854 (1990).ADSGoogle Scholar - 56.K. Leo, T. C. Damen, J. shah, E. O. Göbel, and K. Köhler, Quantum beats of light hole and heavy hole excitons in quantum wells, Appl. Phys. Lett.
**57**, 19 (1990).ADSGoogle Scholar - 57.K. Leo, J. Shah, E. O. Göbel, T. C. Damen, K. Köhler, and P. Ganser, Tunneling in semiconductor heterostructures studied by subpicosecond four-wave mixing, Appl. Phys. Lett.
**56**, 2031 (1990).ADSGoogle Scholar - 58.K. Leo, Dynamics of wavepackets in GaAs/AlGaAs heterostructures, Adv. in Solid State Phys.
**32**, 97 (1992).ADSGoogle Scholar - 59.H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Köhler, Coherent submillimeter-wave emission from charge oscillations in a double-well potential, Phys. Rev. Lett.
**68**, 2216 (1992).ADSGoogle Scholar - 60.J. Feldmann, Bloch oscillations in a semiconductor superlattice, Adv. in Solid State Phys.
**32**, 81 (1992).Google Scholar - 61.C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Coherent submilimeter-wave emission from Bloch oscillations in a semiconductor superlattice, Phys. Rev. Lett.
**70**, 3319 (1993).ADSGoogle Scholar - 62.K. Leo, M. Wegener, J. Shah, D. S. Chemla, E. O. Göbel, T. C. Damen, S. Schmitt-Rink, and W. Schäfer, Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing, Phys. Rev. Lett.
**65**, 1340 (1990).ADSGoogle Scholar - 63.S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D. S. Chemla, Collective effects in excitonic free induction decay: Do semiconductors and atoms emit coherent light in different ways?, Phys. Rev. Lett.
**69**, 2685 (1992).ADSGoogle Scholar - 64.D.-S. Kim, J. Shah, J. E. Cunningham, T. C. Damen, W. Schäfer, M. Hartmann, and S. Schmitt-Rink, Giant excitonic resonance in time-resolved four-wave mixing in quantum wells, Phys. Rev. Lett.
**68**, 1006 (1992).ADSGoogle Scholar - 65.D.-S. Kim, J. Shah, T. C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler, Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: Direct evidence for the dominance of interaction effects, Phys. Rev. Lett.
**69**, 2725 (1992).ADSGoogle Scholar - 66.A. Lohner, K. Rick, P. Leisching, A. Leitenstorfer, T. Elsaesser, T. Kuhn, F. Rossi, and W. Stolz, Coherent optical polarization of bulk GaAs studied by femtosecond photon-echo spectroscopy, Phys. Rev. Lett.
**71**, 77 (1993).ADSGoogle Scholar - 67.P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer, Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons, Phys. Rev. Lett.
**69**, 3800 (1992).ADSGoogle Scholar - 68.C. Comte and G. Mahler, Dynamic Stark effect in interacting electron-hole systems: Light enhanced excitons, Phys. Rev. B
**34**, 7164 (1986).ADSGoogle Scholar - 69.C. Comte and G. Mahler, Excitonic reference state of a model semiconductor in the dynamic Stark regime, Phys. Rev. B
**38**, 10517 (1988).ADSGoogle Scholar - 70.R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp, and G. Röpke, Dynamical screening and self-energy of excitons in the electron-hole plasma, phys. stat. sol (b)
**90**, 175 (1978).ADSGoogle Scholar - 71.R. Zimmermann, On the dynamical stark effect of excitons: The low field limit, phys. stat. sol (b)
**146**, 545 (1988).ADSGoogle Scholar - 72.S. Schmitt-Rink, C. Ell, and H. Haug, Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum well structures, Phys. Rev. B
**33**, 1183 (1986).ADSGoogle Scholar - 73.S. Schmitt-Rink, D. S. Chemla, and H. Haug, Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors, Phys. Rev. B
**37**, 941 (1988).ADSGoogle Scholar - 74.H. Haug, Microscopic theory of the optical band edge nonlinearities, in
*Optical Nonlinearities and Instabilities in Semiconductors*, edited by H. Haug (Academic, San Diego, 1988) p. 53.Google Scholar - 75.F. Bechstedt and S. Glutsch, Non-equilibrium screening and plasmons in a coherently pumped semiconductor, J. Phys.: Condens. Matter
**3**, 7145 (1991).ADSGoogle Scholar - 76.M. Hartmann, H. Stolz, and R. Zimmermann, Kinetics of screening in optically excited semiconductors, phys. stat. sol (b)
**159**, 35 (1990).ADSGoogle Scholar - 77.K. Henneberger, W. Schäfer, and F. Jahnke, Optical and transport nonlinearities in laser excited semiconductors, Physica Scripta
**T35**, 129 (1991).ADSGoogle Scholar - 78.K. Henneberger and H. Haug, Nonlinear optics and transport in laser-excited semiconductors, Phys. Rev. B
**38**, 9759 (1988).ADSGoogle Scholar - 79.A. V. Kuznetsov, Interaction of ultrashort light pulses with semiconductors: Effective Bloch equations with relaxation and memory effects, Phys. Rev. B
**44**, 8721 (1991).ADSGoogle Scholar - 80.D. B. Tran Thoai and H. Haug, Coulomb quantum kinetics in pulse-excited semiconductors, Z. Phys. B
**91**, 199(1993).ADSGoogle Scholar - 81.H. Haug and C. Ell, Coulomb quantum kinetics in a dense electron gas, Phys. Rev. B
**46**, 2126 (1992).ADSGoogle Scholar - 82.W. Schäfer, Theory of dense nonequilibrium exciton systems, in
*Optical Nonlinearities and Instabilities in Semiconductors*, edited by H. Haug (Academic, San Diego, 1988) p. 133.Google Scholar - 83.I. Balslev, R. Zimmermann, and A. Stahl, Two-band density-matrix approach to nonlinear optics of excitons, Phys. Rev. B
**40**, 4095 (1989).ADSGoogle Scholar - 84.A. Stahl, RPA-dynamics of the electronic density matrix in a two-band semiconductor, Z. Phys. B
**72**, 371 (1988).ADSGoogle Scholar - 85.A. Stahl, Coupled two-level systems and the dynamics of semiconductor electrons, phys. stat. sol (b)
**159**, 327 (1990).ADSGoogle Scholar - 86.R. Zimmermann, Theory of dephasing in semiconductor optics, phys. stat. sol (b)
**173**, 129 (1992).ADSGoogle Scholar - 87.S. Schmitt-Rink and D. S. Chemla, Collective excitations and the dynamical Stark effect in a coherently driven exciton system, Phys. Rev. Lett.
**57**, 2752 (1986).ADSGoogle Scholar - 88.M. Lindberg and S. W. Koch, Theory of the optical Stark effect in semiconductors under ultrashort-pulse excitation, phys. stat. sol (b)
**150**, 379 (1988).ADSGoogle Scholar - 89.M. Lindberg and S. W. Koch, Effective Bloch equations for semiconductors, Phys. Rev. B
**38**, 3342 (1988).ADSGoogle Scholar - 90.W. Schäfer, F. Jahnke, and S. Schmitt-Rink, Many-particle effects on transient four-wave-mixing signals in semiconductors, Phys. Rev. B
**47**, 1217 (1993).ADSGoogle Scholar - 91.E. Heiner, Evolution equations for highly excited direct semiconductors in the athermal stage, phys. stat. sol (b)
**146**, 655 (1988).ADSGoogle Scholar - 92.E. Heiner and W. Kleinig, Solutions of optical Bloch equations for highly excited direct gap semiconductors in a time-dependent mean-field approach, Physica Scripta
**46**, 88 (1992).ADSGoogle Scholar - 93.R. Zimmermann and M. Hartmann, Resonant and off-resonant light-matter interaction in semiconductors, phys. stat. sol (b)
**150**, 365 (1988).ADSGoogle Scholar - 94.M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W. Schäfer, Line shape of time-resolved four-wave mixing, Phys. Rev. A
**42**, 5675 (1990).ADSGoogle Scholar - 95.T. Kuhn and F. Rossi, Analysis of coherent and incoherent phenomena in photoexcited semiconductors: A Monte Carlo approach, Phys. Rev. Lett.
**69**, 977 (1992).ADSGoogle Scholar - 96.T. Kuhn and F. Rossi, Monte Carlo simulation of ultrafast processes in photoexcited semiconductors: Coherent and incoherent dynamics, Phys. Rev. B
**46**, 7496 (1992).ADSGoogle Scholar - 97.L. P. Kadanoff and G. Baym,
*Quantum Statistical Mechanics*(Benjamin, New York, 1962).zbMATHGoogle Scholar - 98.E. M. Lifshitz and L. P. Pitaevskii,
*Physical Kinetics*(Pergamon, Oxford, 1981).Google Scholar - 99.C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent material, Rev. Mod. Phys.
**55**, 645 (1983).ADSGoogle Scholar - 100.C. Jacoboni and P. Lugli,
*The Monte Carlo Method for Semiconductor Device Simulations*(Springer, Wien, 1989).Google Scholar - 101.R. Zimmermann, Transverse relaxation and polarizations specifics in the dynamical Stark effect, phys. stat. sol (b)
**159**, 317 (1990).ADSGoogle Scholar - 102.R. Zimmermann, Carrier kinetics for ultrafast optical pulses, J. Lumin.
**53**, 187 (1992).Google Scholar - 103.R. Zimmermann and J. Wauer, Non-Markovian relaxation in semiconductors: An exactly soluble model, Proc. DPC (Boston, 1993), to be published in J. Lumin.Google Scholar
- 104.D. B. Tran Thoai and H. Haug, Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy in polar semiconductors, Phys. Rev. B
**47**, 3574 (1993).ADSGoogle Scholar - 105.F. Rossi, T. Kuhn, J. Schilp, and E. Schöll, Analysis of the coupled coherent and incoherent dynamics in photoexcited semicondutors: A Monte Carlo approach, in
*Proc. 21st ICPS, Beijing, China*, edited by P. Jiang and H. Zheng (World Scientific, Singapore, 1992) p. 165.Google Scholar - 106.A. V. Kuznetsov, Coherent and non-Markovian effects in ultrafast relaxation of photoexcited hot carrier: A model study, Phys. Rev. B
**44**, 13381 (1991).ADSGoogle Scholar - 107.J. Schilp, T. Kuhn, and G. Mahler, Energy relaxation and dephasing of photoexcited carriers: Memory effects and cross terms between different interactions, Proc. 8th HCIS (Oxford, 1993), to be published in Semicond. Sci. Technol.Google Scholar
- 108.G. C. Cho, W. Kütt, and H. Kurz, Subpicosecond time-resolved coherent-phonon oscillations in GaAs, Phys. Rev. Lett.
**65**, 764 (1990).ADSGoogle Scholar - 109.W. Kütt, Coherent phonons in III-V-compounds, Adv. in Solid State Phys.
**32**, 113 (1992).Google Scholar - 110.H. Haug and S. Schmitt-Rink, Electron theory of the optical properties of laser-excited semiconductors, Prog. Quant. Electr.
**9**, 3 (1984).ADSGoogle Scholar - 111.D. C. Scott, R. Binder, and S. W. Koch, Ultrafast dephasing through acoustic plasmon undamping in nonequilibrium electron-hole plasmas, Phys. Rev. Lett.
**69**, 347 (1992).ADSGoogle Scholar - 112.M. Lindberg, R. Binder, and S. W. Koch, Theory of the semiconductor photon echo, Phys. Rev. A
**45**, 1865(1992).ADSGoogle Scholar - 113.F. Rossi, S. Haas, and T. Kuhn, Analysis of coherent and incoherent ultrafast dynamics in photoexcited semiconductors: A Monte Carlo approach, Proc. 8th HCIS (Oxford, 1993), to be published in Semicond. Sci. Technol.Google Scholar
- 114.T. Yajima and Y. Taira, Spatial optical parametric coupling of picosecond light pulses and transverse relaxation effect in resonant media, J. Phys. Soc. Jpn.
**47**, 1620 (1979).ADSGoogle Scholar - 115.J. R. Kuklinski and S. Mukamel, Generalized semiconductor Bloch equations: Local fields and transient gratings, Phys. Rev. B
**44**, 11253 (1991).ADSGoogle Scholar - 116.R. G. Ulbrich, Dense nonequilibrium excitations: Band edge absorption spectra of highly excited Gallium Arsenide, in
*Optical Nonlinearities and Instabilities in Semiconductors*, edited by H. Haug (Academic, San Diego, 1988) p. 121.Google Scholar - 117.G. Bastard, C. Delalande, R. Ferreira, and H. W. Liu, Assisted relaxation and vertical transport of electrons, holes and excitons in semiconductor heterostructures, J. Lumin.
**44**, 247 (1989).Google Scholar - 118.A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, Excitonic effects in coupled quantum wells, Phys. Rev. B
**44**, 6231 (1991).ADSGoogle Scholar - 119.A. P. Heberle, W. W. Rühle, M. G. W. Alexander, and K. Köhler, Resonances in tunneling between quantum wells, Semcond. Sci. Technol.
**7**, B421 (1992).Google Scholar - 120.R. Ferreira, P. Rolland, Ph. Roussignol, C. Delalande, A. Vinattieri, L. Carraresi, M. Colocci, N. Roy, B. Sermage, J. F. Palmier, and B. Etienne, Time-resolved exciton transfer in GaAs/AlGaAs double-quantum-well structures, Phys. Rev. B
**45**, 11782 (1992).ADSGoogle Scholar - 121.S.-L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Exciton Green’s-function approach to optical absorption in a quantum well with an applied electric field, Phys. Rev. B
**43**, 1500 (1991).ADSGoogle Scholar - 122.Y. Z. Hu, R. Binder, and S. W. Koch, Photon echo and valence-band mixing in semiconductor quantum wells, Phys. Rev. B
**47**, 15679 (1993).ADSGoogle Scholar - 123.S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Optical rectification at semiconductor surfaces, Phys. Rev. Lett.
**68**, 102 (1992).ADSGoogle Scholar