Nature of Coherent Four-Wave Mixing Beats in Semiconductors

  • J. Erland
  • I. Balslev
  • J. M. Hvam
Part of the NATO ASI Series book series (NSSB, volume 330)


Coherent quantum beat spectroscopy has recently gained importance for the investigation of semiconducting materials and structures. The variety of excitonic resonances in bulk and low-dimensional semiconductors, and the advent of ultrafast lasers with pulse lengths shorter than typical dephasing times of these excitons, have made it possible to observe quantum beats between close-lying excitonic transitions.1,2,3 In particular, the beat phenomena have been observed in four-wave mixing (FWM) experiments on exciton complexes in GaAs multiple quantum wells,4,5,6,7,8 and in bulk semiconductors.3


Spectral Dependence Ultrafast Laser Quantum Beat Polarization Interference Green Function Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Langer, H. Stolz, and W. von der Osten, Phys. Rev. Lett. 64, 854 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    W.A.J.A. van der Poel, A.L.G.J. Severens, and C.T. Foxon, Optics Commun. 76, 116 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    K.-H. Pantke, V.G. Lyssenko, B.S. Razbirin, J. Erland, and J.M. Hvam, Proc. 21st International Conference on the Physics of Semiconductors, Beijing 1992, edited by P. Jiang and H.-Z. Zheng (World Scientific, Singapore 1992) p. 129.Google Scholar
  4. 4.
    K. Leo, T.C. Damen, J. Shah, E.O. Göbel, and K. Köhler, Appl. Phys. Lett. 57, 19 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    B.F. Feuerbacher, J. Kuhl, R. Eccleston, and K. Ploog, Solid State Commun. 74, 1279 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    K. Leo, T.C. Damen, J. Shah, and K. Köhler, Phys. Rev. B 42, 11359 (1990).ADSCrossRefGoogle Scholar
  7. 7.
    D.J. Lovering, R.T. Phillips, G.J. Denton, and G.W. Smith, Phys. Rev. Lett. 68, 1880 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    K.-H. Pantke, D. Oberhauser, V.G. Lyssenko, and J.M. Hvam, Phys. Rev. B. 47, 2413 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    T. Yajima and Y. Taira, J. Phys. Soc. Japan 47, 1620 (1979).ADSCrossRefGoogle Scholar
  10. 10.
    D.-S. Kim, J. Shah, T.C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler, Phys. Rev. Lett. 69, 2725 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    K. Leo, M. Wegener, J. Shah, D.S. Chemla, E.O. Göbel, T.C. Damen, S. Schmitt-Rink, and W. Schäfer, Phys. Rev. Lett. 65, 1340 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    L. Schultheis, J. Kuhl, A. Honold, and C.W. Tu, Phys. Rev. Lett. 57, 1635 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    C. Dörnfeld and J.M. Hvam, IEEE J. Quantum Electron. 25, 904 (1989).ADSCrossRefGoogle Scholar
  14. 14.
    L.Q. Lampert, A. Compaan, and I.D. Abella, Phys. Rev. A 4, 2022 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    H. Stolz, V. Langer, E. Schreiber, S. Permogorov, and W. von der Osten, Phys. Rev. Lett. 67, 679 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel, and P. Thomas, Phys.Rev. Lett. 69, 2631 (1993).Google Scholar
  17. 17.
    V.G. Lyssenko, J. Erland, I. Balslev, K.-H. Pantke, B.S. Razbirin, and J.M. Hvam, Phys. Rev. B 48, (1993).Google Scholar
  18. 18.
    J. Erland and I. Balslev, Phys. Rev. A 48, (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Erland
    • 1
  • I. Balslev
    • 1
  • J. M. Hvam
    • 1
    • 2
  1. 1.Fysisk InstitutOdense UniversitetOdense MDenmark
  2. 2.Mikroelektronik CentretTechnical University of DenmarkLyngbyDenmark

Personalised recommendations