Coherence Effects on the Exciton Radiative Recombination in Quantum Wells

  • B. Deveaud
  • B. Sermage
  • D. S. Katzer
Part of the NATO ASI Series book series (NSSB, volume 330)


Low temperature luminescence of quantum wells is strongly dominated by excitonic effects [1]. The first reason for this abrupt change, from 3D to 2D systems, lies in the breakdown of the translational symmetry which modifies the usual picture of polariton states (see Hopfield [2]). In 3D systems, coupling of the exciton to photons does not lead directly to absorption or to light emission but to stable states of the system. On the contrary, for excitons confined in two dimensions, coupling to the photon field leads to a finite lifetime of those excitons with a wavevector | k | <ko=nωo/c [3] (here ωo is the frequency of the photon at the exciton energy, n the material refractive index and c the speed of light). On the contrary, excitons with k above nωo/c should not recombine at all; this is because conservation of wavevector cannot be obtained in such a case. When computed in the absence of collisions, the decay rate of near k = 0 2D excitons integrates individual dipole elements over the whole quantum well volume. The radiative lifetime of 2D excitons is then very short of the order of 10ps [3–6].


Radiative Recombination Rayleigh Scattering Radiative Lifetime Excitation Density Exciton Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R.J. Elliot, Phys. Rev., 108, 1384 (1957).ADSCrossRefGoogle Scholar
  2. [2]
    J.J. Hopfield, Phys. Rev., 112, 1555 (1958).ADSzbMATHCrossRefGoogle Scholar
  3. [3]
    V.M. Agranovitch, O.A. Dubovskii, JETP Lett., 3, 223 (1966).Google Scholar
  4. [4]
    M. Orrit, C. Aslangul, P. Kottis, Phys. Rev., B25, 7263 (1982).ADSGoogle Scholar
  5. [5]
    E. Hanamura, Phys. Rev., B38, 1228 (1988).ADSGoogle Scholar
  6. [6]
    L.C. Andreani, F. Tassone, F. Bassani, Solid State Commun., 77, 641 (1990).CrossRefGoogle Scholar
  7. [7]
    B. Deveaud, F. Clérot, N. Roy, K. Satzke, B. Sermage, D.S. Katzer, Phys. Rev. Lett., 67, 2355 (1991)ADSCrossRefGoogle Scholar
  8. [8]
    D.S. Citrin, Phys. Rev., B47, 3832 (1993)ADSGoogle Scholar
  9. [9]
    R. Bauer, D. Bimberg, J. Christen, D. Oertel, D. Mars, J.N. Miller, D. Miller. T. Miller, T. Fukunaga, H. Nakashima, Proceedings of the 18th Conf. on the Phusics of semmiconducttors, Ed. O Engström, World Sci.(1979), p.525.Google Scholar
  10. [10]
    B. Deveaud, F. Clérot, B. Sermage, C. Dumas, D.S. Katzer, in Optical phenomena in semiconductors of reduced dimensions. Eds. D:J: Loockwood, A. Pinczuk, Kluwer Academic Press (1993) p. 129.Google Scholar
  11. [11]
    D. Oberhauser, H. Kalt, W. Schlapp, H. Nickel, C. Klingshirn, J. Lumin., 48 & 49, 717 (1991)CrossRefGoogle Scholar
  12. [12]
    H. Stolz, D. Schwartze, W. Von der Osten, G. Weimann, Phys. Rev., B47, 9669 (1993)ADSGoogle Scholar
  13. [13]
    R. Eccleston, R. Strobel, W.W. Rühle, J. Kuhl, B.F. Feuerbach, K. Ploog, Phys. Rev., 63, 1395 (1992)Google Scholar
  14. [14]
    J. Hegarty, M.D. Sturge, C. Weisbuch, A.C. Gossard, W. Wiegmann, Phys. Rev. Lett., 49, 930 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • B. Deveaud
    • 1
  • B. Sermage
    • 2
  • D. S. Katzer
    • 3
  1. 1.Centre National d’Etudes des TélécommunicationsLannionFrance
  2. 2.Centre National d’Etudes de TélécommunicationsBagneuxFrance
  3. 3.Naval Research LaboratoryUSA

Personalised recommendations