Amplitude Decay and Instantaneous Frequency Dynamics of Excitonic Polarization in Semiconductor Quantum Wells

  • J.-Y. Bigot
  • M.-A. Mycek
  • S. Weiss
  • R. G. Ulbrich
  • D. S. Chemla
Part of the NATO ASI Series book series (NSSB, volume 330)


Coherent light scattering is an ideal tool to investigate the microscopic interactions that take place in various diluted or condensed phase systems1. It is of particular interest in semiconductors where the Coulomb interaction between electrons and holes brings new features in the dynamics of the polarization established by ultrashort optical pulses2. Due to this Coulomb coupling the coherent emission observed in different wave-mixing geometries behaves in a non-trivial fashion. The usual description of the material relaxation with a simple transverse time T 2, as is done for atomic-like systems3, is no longer sufficient. Although the underlying physics is more complex, one may picture these different regimes by analogy with oscillators: the exponential T 2 behavior corresponds to a damped harmonic oscillator, while the Coulomb interacting system leads to a non-exponential damping, as with nonlinear coupled oscillators.


Instantaneous Frequency Quantum Beat Nonlinear Schrodinger Equation Quantum Well Structure Optical Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See, for example, L. Allen and J.H. Eberly, “Optical Resonances and Two Level Atoms” Wiley, New York (1975).Google Scholar
  2. 2.
    See, for example, E.O. Göbel in: “Festkörperprobleme: Advances in Solid State Physics” Vieweg, Braunschweig, Vol. 30, p. 269 (1990).Google Scholar
  3. 3.
    See, for example, T. Yajima and Y. Taira, J. Phys. Soc. Jpn. 47:1620 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    See, for example, “Excitons”, E.I. Rashba and M.D. Sturge eds., North Holland, Amsterdam, (1982).Google Scholar
  5. Optical Nonlinearities and Instabilities in Semiconductors, H. Haug ed., Academic, New York (1988).Google Scholar
  6. 5.
    S. Schmitt-Rink, D.S. Chemla, and D.A.B. Miller, Adv. Phys. 38:89 (1989)ADSCrossRefGoogle Scholar
  7. 6.
    See, for example, W. Rudolph and B. Wilhelmi, “Light Pulse Compression”, V.S. Letokhov, C.V. Shank, Y.R. Shen, and H. Walther eds. Harwood Academic Publishers, London, Chapter 6, p. 108 (1999).Google Scholar
  8. 7.
    S. Schmitt-Rink and D.S. Chemla, Phys. Rev. Lett. 57:2752 (1986)ADSCrossRefGoogle Scholar
  9. S. Schmitt-Rink, D.S. Chemla, and H. Haug, Phys. Rev. B 37:941 (1988)ADSCrossRefGoogle Scholar
  10. A.V. Kuznetsov, Phys. Rev. B 44:8721 (1991).ADSCrossRefGoogle Scholar
  11. 8.
    M. Wegener, D.S. Chemla, S. Schmitt-Rink, and W. Schäfer, Phys. Rev. A 42:5665 (1990).ADSCrossRefGoogle Scholar
  12. K. Leo, M. Wegener, J. Shah, D.S. Chemla, E.O. Göbel, T.C. Damen, S. Schmitt-Rink and W. Schäfer, Phys. Rev. Lett. 65:1340 (1990).ADSCrossRefGoogle Scholar
  13. 9.
    S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D.S. Chemla, Phys. Rev. Lett. 69:2685 (1992).ADSCrossRefGoogle Scholar
  14. D.S. Kim, J. Shah, T.C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, Phys. Rev. Lett. 69:2725 (1992).ADSCrossRefGoogle Scholar
  15. 10.
    D.E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16:42 (1991).ADSCrossRefGoogle Scholar
  16. 11.
    J.-Y. Bigot, M.-A. Mycek, S. Weiss, R.G. Ulbrich, and D.S. Chemla, Phys. Rev. Lett. 70:3307 (1993).ADSCrossRefGoogle Scholar
  17. 12.
    R. Kubo, M. Toda, and N. Hashitsume, “Statistical Physics II: Nonequilibrium Statistical Mechanics” Springer Series in Solid State Science, Vol. 31, Springer-Verlag, Berlin (1985).CrossRefGoogle Scholar
  18. 13.
    M.-A. Mycek, J.-Y. Bigot, and D.S. Chemla (to be published).Google Scholar
  19. 14.
    L. Schultheis, J. Kuhl, A. Honold, and C.W. Tu, Phys. Rev. Lett. 57:1635 (1986).ADSCrossRefGoogle Scholar
  20. A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, Phys. Rev. B 40:6442 (1989).ADSCrossRefGoogle Scholar
  21. 15.
    M. Lindberg, R. Binder, and S.W. Koch, Phys. Rev. A 45:1865 (1992).ADSCrossRefGoogle Scholar
  22. 16.
    R.H. Dicke, Phys. Rev. 93:99 (1954).ADSzbMATHCrossRefGoogle Scholar
  23. A.M. Ponte Gonçalves and A. Tallet Phys. Rev. A 1:1472 (1970).CrossRefGoogle Scholar
  24. 17.
    J.-Y. Bigot, M.T. Portella, R.W. Schoenlein, J.E. Cunningham, and C.V. Shank, Phys. Rev. Lett. 67:636 (1991).ADSCrossRefGoogle Scholar
  25. 18.
    E.O. Göbel, K. Leo, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, and K. Köhler, Phys. Rev. Lett. 64:1801 (1990).ADSCrossRefGoogle Scholar
  26. K. Leo, J. Shah, E.O. Göbel, T.C. Damen, S. Schmitt-Rink, W. Schäfer, J.F. Müller, and K. Köhler, Phys. Rev. Lett. 66:201 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J.-Y. Bigot
    • 1
  • M.-A. Mycek
    • 2
    • 3
  • S. Weiss
    • 2
    • 3
  • R. G. Ulbrich
    • 4
  • D. S. Chemla
    • 2
    • 3
  1. 1.Unité Mixte 380046 CNRS — ULP — EHICSInstitut de Physique et Chimie des Matériaux de StrasbourgStrasbourg CedexFrance
  2. 2.Physics DepartmentUniversity of California at BerkeleyBerkeleyUSA
  3. 3.Materials Sciences DivisionLawrence Berkeley LaboratoryBerkeleyUSA
  4. 4.Department of PhysicsUniversity of GöttingenGöttingenGermany

Personalised recommendations