Advertisement

Optical Dephasing of Excitons in III-V Semiconductors

  • J. Kuhl
  • E. J. Mayer
  • G. Smith
  • R. Eccleston
  • D. Bennhardt
  • P. Thomas
  • K. Bott
  • O. Heller
Part of the NATO ASI Series book series (NSSB, volume 330)

Abstract

Rapid progress in the development of mode-locked laser systems during the past decade has boosted the time resolution attainable in nonlinear optical spectroscopy well below 100 fs. Ti: sapphire lasers which can directly generate pulses as short as 12 fs [1] mark the most recent milestone of this evolution. This new generation of fs solid state lasers surpasses the older colliding-pulse mode-locked (CPM) dye laser [2] by far with respect to output power and stability, and most importantly, by the broad tunability of the fs output between 680–1000 nm. Combining these lasers with frequency converters like harmonic generators [3] or optical parametric oscillators [4] extends the tunability range to the ultraviolet, visible, near and middle infrared regime.

Keywords

Quantum Beat Photon Echo Dephasing Time Perpendicular Polarization Polarization Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.T. Asaki, C.-P. Huang, D. Garvey, J. Zhou, H.C. Kapteyn, and M.C. Murnane, “Generation of 11-fs pulses from a self-mode-locked Ti: sapphire laser”, Opt. Lett. 18:977 (1993).ADSCrossRefGoogle Scholar
  2. P.F. Curley, Ch. Spielmann, T. Brabec, F. Krausz, E. Wintner, and A.J. Schmidt, “Operation of a femtosecond Ti: sapphire solitary laser in the vicinity of zero group-delay dispersion”, Opt. Lett. 18:54 (1993).ADSCrossRefGoogle Scholar
  3. B. Proctor and F. Wise, “Generation of 13-fs pulses from a mode-locked Ti: Al2O3 laser with reduced third-order dispersion”, Appl. Phys. Lett. 62:470 (1993).ADSCrossRefGoogle Scholar
  4. 2.
    R.L. Fork, B.I. Greene, and C.V. Shank, “Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking”, Appl. Phys. Lett. 36:671 (1981).ADSCrossRefGoogle Scholar
  5. J.A. Valdmanis, R.L. Fork, and J.P. Gordon, “Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain”, Opt. Lett. 10:131 (1985).ADSCrossRefGoogle Scholar
  6. 3.
    P.F. Curley and A.I. Ferguson, “Resonant frequency doubling of a self-starting coupled-cavity, mode-locked Ti: Al2O3 laser”, Opt. Lett. 16:321 (1981).ADSCrossRefGoogle Scholar
  7. 4.
    Q. Fu, G. Mak, and H.M. van Driel, “High-power, 62-fs infrared optical parametric oscillator synchronously pumped by a 76-MHz Ti: Sapphire laser”, Opt. Lett. 17:1006 (1992).ADSCrossRefGoogle Scholar
  8. R.J. Ellingson and C.L. Tang, “High-power, high-repetition-rate femtosecond pulses tunable in the visible”, Opt. Lett. 18:438 (1993).ADSCrossRefGoogle Scholar
  9. 5.
    B.S. Wherrett, A.L. Smirl, and T.F. Boggess, “Theory of Degenerate Four-Wave-Mixing in Picosecond Excitation-Probe-Experiments”, IEEE J. Quant. Electr. QE19:680 (1983).ADSCrossRefGoogle Scholar
  10. A.L. Smirl, T.F. Boggess, B.S. Wherrett, G.P. Perryman, and A. Miller, “Picosecond Transient Orientational and Concentration Gratings in Germanium”, IEEE J. Quant Electr. QE19:690 (1983).ADSCrossRefGoogle Scholar
  11. H.J. Eichler, P. Günther, and D.W. Pohl, “Laser-Induced Dynamical Grating”, (Springer Verlag, Berlin-Heidelberg-New York, 1980).Google Scholar
  12. 6.
    I.D. Abella, N.A. Kurnit, and R.S. Hartmann, “Photon echos”, Phys. Rev. 57:391 (1966).ADSCrossRefGoogle Scholar
  13. N.A. Kurnit, I.D. Abella, and S.R. Hartmann, “Observation of photon echo”, Phys. Rev. Lett. 13:567 (1964).ADSCrossRefGoogle Scholar
  14. 7.
    V. Langer, H. Stolz, and W. von der Osten, “Observation of Quantum Beats in the Resonance Fluorescence of Free Excitons”, Phys. Rev. Lett. 64:854 (1990).ADSCrossRefGoogle Scholar
  15. E.O. Göbel, K. Leo, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, and K. Köhler, “Quantum Beats of Excitons in Quantum Wells”, Phys. Rev. Lett. 64:1801 (1990).ADSCrossRefGoogle Scholar
  16. B.F. Feuerbacher, J. Kuhl, R. Eccleston, and K. Ploog, “Quantum Beats between the Light and Heavy Hole in GaAs-AlGaAs Quantum Wells”, Sol. Stat. Comm. 74:1279 (1990).ADSCrossRefGoogle Scholar
  17. K. Leo, T.C. Damen, J. Shah, E.O. Göbel, and K. Köhler, “Quantum Beats of Light and Heavy Hole Excitons in Quantum Wells”, Appl. Phys. Lett. 57:19 (1990).ADSCrossRefGoogle Scholar
  18. K. Leo, T.C. Damen, J. Shah, and K. Köhler, “Quantum beats of free and bound excitons in GaAs/AlxGa1−xAs quantum wells”, Phys. Rev. B 42:11359 (1990).ADSCrossRefGoogle Scholar
  19. K. Leo, J. Shah, T.C. Damen, A. Schulze, T. Meier, S. Schmitt-Rink, P. Thomas, E.O. Göbel, S.L. Chuang, M.S.C. Lao, W. Schäfer, K. Köhler, and P. Ganser, “Dissipative Dynamics of an Electronic Wave-packet in a Semiconductor Double Well Potential”, IEEE J. Quant. Electr. 28:2498 (1992).ADSCrossRefGoogle Scholar
  20. 8.
    R. Eccleston, J. Kuhl, D. Bennhardt, and P. Thomas, “Intensity Dependent Four-Wave-Mixing Rules in Quantum Wells”, Sol. Stat. Comm. 86:93 (1993).ADSCrossRefGoogle Scholar
  21. 9.
    D. Bennhardt, P. Thomas, R. Eccleston, E.J. Mayer, and J. Kuhl, “Polarization Dependence of Four-Wave-Mixing Signals in Quantum Wells”, Phys. Rev. B 47:13485 (1993).ADSCrossRefGoogle Scholar
  22. 10.
    K. Leo, J. Shah, S. Schmitt-Rink, and K. Köhler, in: “Proceed. 7th Int. Symp. on Ultrafast Processes in Spectroscopy”, Bayreuth, Germany, eds. A. Laubereau and A. Seilmeier (Inst. of Phys. Conf. Series 126, Bristol, Philadelphia, 1992) p. 411.Google Scholar
  23. H.H. Yaffe, Y. Prior, J.P. Harbison, and L.T. Florez, “Polarization and wavelength dependence of relaxation processes as measured by time delayed four-wave-mixing in quantum wells”, in “Proceed. 2nd Conf. Quantum Electronics and Laser Science”, 1991, Technical Digest Series, Vol. 11 (Optical Society of America, Washington, D.C., 1991), p. 196; O. Carmel, I. Bar-Joseph, IQEC, Vienna, post-deadline paper (1992).Google Scholar
  24. 11.
    S.T. Cundiff, H. Wang, and D.G. Steel, “Poalrization-dependent picosecond excitonic nonlinearities and the complexities of disorder”, Phys. Rev. B 46:7248 (1992).ADSCrossRefGoogle Scholar
  25. 12.
    See e.g., “Optical Nonlinearities and Instabilities in Semiconductors”, ed. by H. Haug (Academic Press, New York-London, 1988).Google Scholar
  26. 13.
    See e.g. R.G. Brewer, “Coherent optical transients”, Phys. Today 5:50 (1977).CrossRefGoogle Scholar
  27. T. Yajima and Y. Taira, “Spatial Optical Parametric Coupling of Picosecond Light Pulses and Transverse Relaxation Effect in Resonant Media”, J. Phys. Soc. Jpn. 47:1620 (1977).ADSCrossRefGoogle Scholar
  28. 14.
    J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, and R.J. Elliot, “Linewidth Dependence of Radiation Exciton Lifetimes in Quantum Wells”, Phys. Rev. Lett. 59:2337 (1987).ADSCrossRefGoogle Scholar
  29. R. Eccleston, B.F. Feuerbacher, J. Kuhl, W.W. Rühle, and K. Ploog, “Density-Dependent Exciton Radiative Lifetimes in GaAs Quantum Wells”, Phys. Rev. B 45:11403 (1992).ADSCrossRefGoogle Scholar
  30. D.S. Citrin, “Radiative Lifetimes of Excitons in Quantum Wells: Localization and Phase-Coherence Effects”, Phys. Rev. B 47:3832 (1993).ADSCrossRefGoogle Scholar
  31. D.S. Citrin “Homogeneous-Linewidth Effects on Radiative Lifetimes of Excitons in Quantum Wells”, Sol. Stat. Commun. 84:281 (1992).ADSCrossRefGoogle Scholar
  32. V. Srinivas, J. Hrymiewicz, Y.-J. Chen, and C.E.C. Wood, “Intrinsic Linewidths and Radiative Lifetimes of Free-Excitons in GaAs Quantum Wells”, Phys. Rev. B 46:10193 (1992).ADSCrossRefGoogle Scholar
  33. 15.
    A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, “Reflected degenerate four-wave-mixing on GaAs single quantum wells”, Appl. Phys. Lett. 52:2105 (1988).ADSCrossRefGoogle Scholar
  34. 16.
    A.M. Weiner and E.P. Ippen, “Novel transient scattering technique for femtosecond dephasing measurements”, Opt. Lett. 9:53 (1984).ADSCrossRefGoogle Scholar
  35. 17.
    See, e.g. J.C. AuJeung in “Optical Phase Conjugation”, ed. R.A. Fisher (Academic, New York) 1983, p. 285, see also Ref. [28].CrossRefGoogle Scholar
  36. 18.
    G. Noll, U. Siegner, S. Shevel, and E.O. Göbel, “Picosecond Stimulated Photon Echo Due to Intrinsic Excitations in Semiconductor Mixed Crystals”, Phys. Rev. Lett. 64:792 (1990).ADSCrossRefGoogle Scholar
  37. 19.
    M.D. Webb, S.T. Cundiff, and D.G. Steel, “Observation of Time-Resolved Picosecond Stimulated Photon Echoes and Free Polarization Decay in GaAs/AlGaAs Multiple Quantum Wells”, Phys. Rev. Lett. 66:934 (1991).ADSCrossRefGoogle Scholar
  38. 20.
    M. Koch, J. Feldmann, G. von Plessen, E.O. Göbel, P. Thomas, and K. Köhler, “Quantum Beats versus Polarization Interference: An Experimental Distinction”, Phys. Rev. Lett. 69:3631 (1992).ADSCrossRefGoogle Scholar
  39. 21.
    M. Koch, J. Feldmann, E.O. Göbel, P. Thomas, and J. Shah, “Coherent Coupling of Exciton Transitions in different Quantum Well Islands”, to be published.Google Scholar
  40. 22.
    For reviews see e.g., J. Kuhl, A. Honold, L. Schultheis, and C.W. Tu, “Optical Dephasing and Orientational Relaxation of Wannier-Excitons and Free Carriers in GaAs and GaAs/AlxGa1−xAs Quantum Wells”, Festkörperprobleme 29:157 (1989).Google Scholar
  41. S.T. Cundiff and D.G. Steel, “Coherent Transient Spectroscopy of Excitons in GaAs-AlGaAs Quantum Wells”, IEEE J. Quant. Electr. 28:2423 (1992).ADSCrossRefGoogle Scholar
  42. 23.
    L. Schultheis, J. Kuhl, A. Honold, and C.W. Tu, “Picosecond Phase Coherence and Orientational Relaxation of Excitons in GaAs”, Phys. Rev. Lett. 57:1793 (1986).ADSCrossRefGoogle Scholar
  43. 24.
    A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, “Collision braodening of two-dimensional excitons in a GaAs single quantum well”, Phys. Rev. B 40:6442 (1989).ADSCrossRefGoogle Scholar
  44. 25.
    A. Honold, T. Saku, Y. Horikoshi, and K. Köhler, “Optical dephasing of light-hole excitons in GaAs single quantum wells”, Phys. Rev. B 45:6010 (1992).ADSCrossRefGoogle Scholar
  45. 26.
    K. Leo, E.O. Göbel, T.C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J.F. Müller, K. Köhler, and P. Ganser, “Subpicosecond Four-Wave-Mixing in GaAs/AlxGa1−xAs Quantum Wells”, Phys. Rev. B 44:5726 (1991).ADSCrossRefGoogle Scholar
  46. 27.
    L. Schultheis, M.D. Sturge, and J. Hegarty, “Photon echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells”, Appl. Phys. Lett. 47:995 (1985).ADSCrossRefGoogle Scholar
  47. M.D. Webb, S.T. Cundiff, and D.G. Steel, “Stimulated-picosecond-photon-echo studies of localized exciton relaxation and dephasing in GaAs/AlxGa1−xAs multiple quantum wells”, Phys. Rev. B 43:12658 (1991).ADSCrossRefGoogle Scholar
  48. 28.
    V. Heuckeroth, D. Bennhardt, P. Thomas, and H. Vaupel, “Optical phase relaxation in disordered semiconductors due to electron-phonon coupling”, Proceedings of the Vth Internat. Conf. on Hopping and Related Phenomena, Glasgow (1993), World Scientific Singapore.Google Scholar
  49. 29.
    M. Wegener, E.O. Göbel, G. Sucha, N. Sauer, T.Y. Chang, W. Schäfer, S. Schmitt-Rink, and D.S. Chemla, “Ultrafast dephasing of excitons at low temperatures in ternary InGaAs/InAlAs quantum wells”, XVII Internat. Quantum Electronics Conf., IQEC 90, Anaheim (1990), Technical Digest, p.194.Google Scholar
  50. 30.
    U. Siegner, D. Weber, E.O. Göbel, D. Bennhardt, V. Heuckeroth, R. Saleh, S.D. Baranowskii, P. Thomas, H. Schwab, C. Klingshirn, J.M. Hvam, and V.G. Lyssenko, “Optical dephasing in semiconductor mixed crystals”, Phys. Rev. B 46:4564 (1992).ADSCrossRefGoogle Scholar
  51. 31.
    L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, “Optical Dephasing of Homogeneously Broadened Two-Dimensional Exciton Transitions in GaAs Quantum Wells”, Phys. Rev. B 34:9027 (1986).ADSCrossRefGoogle Scholar
  52. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, “Phase Coherence and line broadening of free excitons in GaAs Quantum Wells”, Superlattices and Microstructures 2:441 (1986).ADSCrossRefGoogle Scholar
  53. 32.
    T. Takagahara, “Localization and energy transfer of quasi-two-dimensional excitons in GaAs-AlAs quantum-well heterostructures”, Phys. Rev. B 31:6552 (1985).ADSCrossRefGoogle Scholar
  54. T. Takagahara, “Localization and homogeneous dephasing of quasi-two-dimensional excitons in quantum-well heterostructures”, Phys. Rev. B 32:7013 (1985).ADSCrossRefGoogle Scholar
  55. 33.
    W.H. Knox, R.L. Fork, M.C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, A.C. Gossard, and W. Wiegmann, “Femtosecond Dynamics of Resonantly Excited Excitons in Room-Temperature GaAs Quantum Wells”, Phys. Rev. Lett. 54:1306 (1985).ADSCrossRefGoogle Scholar
  56. 34.
    L. Schultheis, J. Kuhl, A. Honold, and C.W. Tu, “Ultrafast Phase Relaxation of Excitons via Exciton-Exciton and Exciton-Electron Collisions”, Phys. Rev. Lett. 57:1635 (1986).ADSCrossRefGoogle Scholar
  57. 35.
    G. Tränkle, H. Leier, A. Forchel, H. Haug, C. Ell, and G. Weimann, “Dimensionality Dependence of the Band-Gap Renormalization in Two-and Three-Dimensional Electron-Hole Plasmas in GaAs”, Phys. Rev. Lett. 58:419 (1987).ADSCrossRefGoogle Scholar
  58. 36.
    S. Schmitt-Rink, D.-S. Chemla, and D.A.B. Miller, “Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures”, Phys. Rev. B 32:6601 (1985).ADSCrossRefGoogle Scholar
  59. 37.
    N. Peyghambarian, H.M. Gibbs, J.L. Jewell, A. Antonetti, A. Migus, D. Hulin, and A. Mysyrowicz, “Blue Shift of the Exciton Resonance due to Exciton-Exciton Interactions in a Multiple-Quantum-Well Structure”, Phys. Rev. Lett. 53:2433 (1984).ADSCrossRefGoogle Scholar
  60. D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc, H.M. Gibbs, and N. Peyghambarian, “Well-size dependence of exciton blue shift in GaAs multiple-quantum-well structures”, Phys. Rev. B 33:4389 (1986).ADSCrossRefGoogle Scholar
  61. 38.
    S. Schmitt-Rink, D. Bennhardt, V. Heuckeroth, P. Thomas, P. Haring, G. Maidorn, H. Bakker, K. Leo, D.-S. Kim, J. Shah, and K. Köhler, “Polarization dependence of heavy-and light-hole quantum beats”, Phys. Rev. B 46:10460 (1992).ADSCrossRefGoogle Scholar
  62. 39.
    D.S. Kim, J. Shah, T.C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler, “Unusually Slow Temperai Evolution of Femtosecond Four-Wave-Mixing Signals in Intrinsic GaAs Quantum Wells: Direct Evidence for the Dominance of Interaction Effects”, Phys. Rev. Lett. 69:2725 (1992).ADSCrossRefGoogle Scholar
  63. 40.
    S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D.S. Chemla, “Collective Effects in Excitonic and Free Induction Decay: Do Semiconductors and Atoms Emit Coherent Light in Different Ways?”, Phys. Rev. Lett. 69:2685 (1992).ADSCrossRefGoogle Scholar
  64. 41.
    R.C. Miller, D.A. Kleinman, A.C. Gossard, and O. Munteanu, “Biexcitons in GaAs quantum wells”, Phys. Rev. B 25:6545 (1982).ADSCrossRefGoogle Scholar
  65. D.A. Kleinman, “Binding energy of biexcitons and bound excitons in quantum wells”, Phys. Rev. B 28:871 (1983).ADSCrossRefGoogle Scholar
  66. R. Cingolani, Y. Chen, and K. Ploog, “Biexciton formation in GaAs/AlxGa1−xAs multiple quantum wells: An optical investigation”, Phys. Rev. B 38:13478 (1988).ADSCrossRefGoogle Scholar
  67. 42.
    R.T. Phillips, D.J. Lovering, G.J. Denton, and G.W. Smith, “Biexciton creation and recombination in a GaAs quantum well”, Phys. Rev. B 45:4308 (1992).ADSCrossRefGoogle Scholar
  68. 43.
    D.R. Wake, J.C. Kim, and J.P. Wolfe, “Biexcitons in GaAs/AlGaAs Quantum Wells — their Approach to Chemical Equilibrium and Transport”, Quantum Electronics Laser Science Conf., QELS 93, Baltimore, May 2–7, 1993, postdeadline paper.Google Scholar
  69. 44.
    M. Wegener, D.S. Chemla, S. Schmitt-Rink, and W. Schäfer, “Line shape of time-resolved four-wave mixing”, Phys. Rev. A 42:5675 (1990).ADSCrossRefGoogle Scholar
  70. 45.
    K. Leo, M. Wegener, J. Shah, D.S. Chemla, E.O. Göbel, T.C. Damen, S. Schmitt-Rink, and W. Schäfer, “Effects of Coherent Polarization Interactions on Time-Resolved Degenerate Four-Wave Mixing”, Phys. Rev. Lett. 65:1340 (1990).ADSCrossRefGoogle Scholar
  71. 46.
    C. Dörnfeld and J.M. Hvam, “Optical Nonlinearities and Phase Coherence in CdSe Studied by Transient Four-Wave Mixing”, IEEE J. Quant. Electr. QE-25:904 (1989).ADSCrossRefGoogle Scholar
  72. 47.
    D.J. Lovering, R.T. Phillips, G.J. Denton, and G.W. Smith, “Resonant Generation of Biexcitons in a GaAs Quantum Well”, Phys. Rev. Lett. 68:1880 (1992).ADSCrossRefGoogle Scholar
  73. 48.
    K.H. Pantke, D. Oberhauser, V.G. Lyssenko, J.M. Hvam, and G. Weimann, “Coherent generation and interference of excitons and biexcitons in GaAs/AlxGa1−xAs quantum wells”, Phys. Rev. B 47:2413 (1993).ADSCrossRefGoogle Scholar
  74. 49.
    S. Bar-Ad and I. Bar-Joseph, “Absorption Quantum Beats of Magnetoexcitons in GaAs Heterostructures”, Phys. Rev. Lett. 66:2491 (1991).ADSCrossRefGoogle Scholar
  75. S. Bar-Ad and I. Bar-Joseph, “Exciton Spin Dynamics in GaAs Heterostructures”, Phys. Rev. Lett. 68:349 (1992).ADSCrossRefGoogle Scholar
  76. G. Finkelstein, S. Bar-Ad, O. Carmel, and I. Bar-Joseph, “Biexcitonic Effects in Transient Nonlinear Optical Experiments in Quantum Wells”, Phys. Rev. B 47:12964 (1993).ADSCrossRefGoogle Scholar
  77. 50.
    H.H. Yaffe, Y. Prior, J.P. Harbison, and L.T. Florez, “Polarization dependence and selection rules of transient four-wave mixing in GaAs quantum-well excitons”, J. Opt. Soc. Am. B10:578 (1993).ADSGoogle Scholar
  78. 51.
    G. Smith, E.J. Mayer, J. Kuhl, D. Bennhardt, K. Bott, E. Heller, and P. Thomas, to be published.Google Scholar
  79. 52.
    K. Bott, O. Heller, D. Bennhardt, P. Thomas, E.J. Mayer, G. Smith, and J. Kuhl, to be published.Google Scholar
  80. 53.
    T. Saiki, M. Kuwata-Gonokami, T. Matsusue, and H. Sakaki, “Elementary Excitation Picture of Excitonic Resonant Nonlinearity in a GaAs Quantum Well”, Quantum Electronics and Laser Science Conf., QELS-93, Baltimore, May 2–7 (1993); 1993 Technical Digest Series, Vol. 12.Google Scholar
  81. 54.
    G. Bastard, “Wave Mechanics Applied to Semiconductor Heterostructures” (Les Editions de Physique, Les Ulis, France 1988).Google Scholar
  82. 55.
    S. Cundiff, private communications.Google Scholar
  83. 56.
    E.J. Mayer, G. Smith, J. Kuhl, H. Lage, D. Heitmann, and K. Ploog, to be published.Google Scholar
  84. 57.
    H. Wang, K.B. Ferrio, D.G. Steel, “Polarization-dependent transient nonlinear optical response of heavy-and light-hole excitons in GaAs”, Quantum Electronics and Laser Science Conference, QELS-93, Baltimore, May 2–7 (1993); 1993 Techn. Digest Series, Vol. 12.Google Scholar
  85. 58.
    Y.Z. Hu, R. Binder, S.W. Koch, “Valence-band mixing and photon echo in semiconductor quantum wells”, Quantum Electronics and Laser Science Conf., QELS-93, Baltimore, May 2–7, (1993), 1993 Techn. Digest Series, Vol. 12.Google Scholar
  86. Y.Z. Hu, R. Binder, S.W. Koch, “Photon echo and valence-band mixing in semiconductor quantum wells”, Phys. Rev. B 47:15679 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. Kuhl
    • 1
  • E. J. Mayer
    • 1
  • G. Smith
    • 1
  • R. Eccleston
    • 1
  • D. Bennhardt
    • 2
  • P. Thomas
    • 2
  • K. Bott
    • 2
  • O. Heller
    • 2
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany
  2. 2.Physics Dept.Philipps UniversityMarburgGermany

Personalised recommendations