The Two-Photon Decay of Atomic Hydrogen and Tests of Bell’s Inequality

  • A. J. Duncan
Part of the Physics of Atoms and Molecules book series (PIDF)

Abstract

Ever since it was discovered that atoms have an internal structure, the theoretical and experimental study of atomic hydrogen has played a crucial role in the development of our knowledge and understanding of atomic physics and quantum mechanics. The states with principal quantum number n = 2 are and have been of special interest and importance, in particular with regard to the determination of the fine structure constant and the measurement of the Lamb shift. It is also possible that, in the future, precise measurement of the lifetime of the metastable 2 2 S 1/2 state could reveal the existence of time reversal and parity nonconserving effects due, for example, to the presence of a permanent electron dipole moment or neutral currents. It was, of course, the observation of the Lamb shift in 1947 by Lamb and Retherford(1) that, by demonstrating the nondegeneracy of the 2 2 S 1/2 and 2 2 P 1/2 states, confirmed that the 2 2 S 1/2 state would be metastable in experimentally realizable situations, and showed that it should be possible to observe the two-photon emission that is the main mode of decay of this state.

Keywords

Linear Polarizer Photon Pair Lamb Shift Coincidence Rate Fast Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947); 79, 549 (1950).ADSCrossRefGoogle Scholar
  2. 2.
    M. Göppert-Mayer, Ann. Phys. (N.Y.) 9, 273 (1931).Google Scholar
  3. 3.
    G. Breit and E. Teller, Astrophys. J. 91, 215 (1940).ADSCrossRefGoogle Scholar
  4. 4.
    L. Spitzer and J. L. Greenstein, Astrophys. J. 114, 407 (1951).ADSCrossRefGoogle Scholar
  5. 5.
    J. Shapiro and G. Breit, Phys. Rev. 113, 179 (1959).ADSCrossRefGoogle Scholar
  6. 6.
    B. A. Zon and L. P. Rapaport, JETP Lett. 7, 52 (1968).ADSGoogle Scholar
  7. 7.
    S. Klarsfeld, Phys. Lett. 30A, 382 (1969).ADSGoogle Scholar
  8. 8.
    W. R. Johnson, Phys. Rev. Lett. 29, 1123 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Goldman and G. W. F. Drake, Phys. Rev. A 24, 183 (1981).ADSGoogle Scholar
  10. 10.
    F. A. Parpia and W. R. Johnson, Phys. Rev. A 26, 1142 (1982).ADSGoogle Scholar
  11. 11.
    J. H. Tung, X. M. Ye, G. J. Salamo, and F. T. Chan, Phys. Rev. A 30, 1175 (1984).ADSGoogle Scholar
  12. 12.
    V. Florescu, Phys. Rev. A 30, 2441 (1984).MathSciNetADSGoogle Scholar
  13. 13.
    A. Costescu, I. Brandus, and N. Mezincescu, J. Phys. B 18, LU (1985).Google Scholar
  14. 14.
    G. W. F. Drake, Phys. Rev. A 34, 2871 (1986).ADSGoogle Scholar
  15. 15.
    M. Lipeles, R. Novick, and N. Tolk, Phys. Rev. Lett. 15, 690, 815 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    C. J. Artura, N. Tolk, and R. Novick, Astrophys. J. 157, L181 (1960).ADSCrossRefGoogle Scholar
  17. 17.
    R. W. Schmeider and R. Marrus, Phys. Rev. Lett. 25, 1692 (1970).ADSCrossRefGoogle Scholar
  18. 18.
    R. Marrus and R. W. Schmeider, Phys. Rev. A 5, 1160 (1972).ADSGoogle Scholar
  19. 19.
    C. L. Cocke, B. Curnette, J. R. Macdonald, J. A. Bednar, and R. Marrus, Phys. Rev. A 9, 2242 (1974).ADSGoogle Scholar
  20. 20.
    M. H. Prior, Phys. Rev. Lett. 29, 611 (1972).ADSCrossRefGoogle Scholar
  21. 21.
    C. A. Kocher, J. E. Clendenin, and R. Novick, Phys. Rev. Lett. 29, 615 (1972).ADSCrossRefGoogle Scholar
  22. 22.
    E. A. Hinds, J. E. Clendenin, and R. Novick, Phys. Rev. A 17, 670 (1978).ADSGoogle Scholar
  23. 23.
    H. Gould and R. Marrus, Phys. Rev. A 28, 2001 (1983).ADSGoogle Scholar
  24. 24.
    Y. Bannett and I. Freund, Phys. Rev. Lett. 49, 539 (1982).ADSCrossRefGoogle Scholar
  25. 25.
    P. Bräunlich, R. Hall, and P. Lambropoulos, Phys. Rev. A 5, 1013 (1972).ADSGoogle Scholar
  26. 26.
    D. O’connell, K. J. Kollath, A. J. Duncan, and H. Kleinpoppen, J. Phys. B 8, L214 (1975).ADSGoogle Scholar
  27. 27.
    H. Kruger and A. Oed, Phys. Lett. 54A, 251 (1975).ADSGoogle Scholar
  28. 28.
    J. S. Bell, Physics (N.Y.) 1, 195 (1964).Google Scholar
  29. 29.
    W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790, 2647(E) (1985).ADSGoogle Scholar
  30. 30.
    A. J. Duncan, in Atomic Physics 10, Book of Invited Papers, Tenth International Conference on Atomic Physics (ICAP-X), Tokyo, Japan, August 25–29, 1986, edited by H. Narumi and I. Shimamura, pp. 121–140 (Elsevier, New York, 1987).Google Scholar
  31. 31.
    F. M. Pipkin, in Advances in Atomic and Molecular Physics, edted by D. R. Bates and B. Bederson (Academic, New York, 1978), Vol. 14, pp. 281–340.Google Scholar
  32. 32.
    J. F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).ADSCrossRefGoogle Scholar
  33. 33.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).ADSCrossRefGoogle Scholar
  34. 34.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 49, 91 (1982).ADSCrossRefGoogle Scholar
  35. 35.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    A. Aspect and P. Grangier, Lett. Nuovo Cimento 43, 345 (1985).CrossRefGoogle Scholar
  37. 37.
    V. Paramananda and D. K. Butt, J. Phys. G 13, 449 (1987).ADSGoogle Scholar
  38. 38.
    T. Haji-Hassan, A. J. Duncan, W. Perrie, H. J. Beyer, and H. Kleinpoppen, Phys. Lett. 123A, 110(1987).ADSGoogle Scholar
  39. 39.
    C. K. Au, Phys. Rev. A 14, 531 (1976).ADSGoogle Scholar
  40. 40.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSMATHCrossRefGoogle Scholar
  41. 41.
    D. Bohm, Quantum Theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1951).Google Scholar
  42. 42.
    D. Bohm, Phys. Rev. 85, 166, 180 (1952).MathSciNetADSMATHCrossRefGoogle Scholar
  43. 43.
    D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSCrossRefGoogle Scholar
  45. 45.
    J. F. Clauser and M. A. Horne, Phys. Rev. D 10, 526 (1974).ADSGoogle Scholar
  46. 46.
    S. J. Freedman, Ph.D. thesis, University of California, Berkeley (1972).Google Scholar
  47. 47.
    M. Bacal, A. Truc, H. J. Doucet, H. Lamain, and M. Chretien, Nucl. Instrum. Methods 114, 407 (1974).ADSCrossRefGoogle Scholar
  48. 48.
    M. Bacal and W. Reichelt, Rev. Sci. Instrum. 20, 769 (1974).ADSCrossRefGoogle Scholar
  49. 49.
    T. W. Marshall, E. Santos, and F. Selleri, Lett. Nuovo Cimento 38, 41 (1983).MathSciNetCrossRefGoogle Scholar
  50. 50.
    F. Selleri, NUOVO Cimento 39, 252 (1984).Google Scholar
  51. 51.
    S. Pascazio, NUOVO Cimento D 5, 23 (1985).MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    A. Garuccio and F. Selleri, Phys. Lett. 103A, 99 (1984).MathSciNetADSGoogle Scholar
  53. 53.
    T. Haji-Hassan, A. J. Duncan, W. Perrie, H. J. Beyer, H. Kleinpoppen, and E. Merzbacher, in Book of Abstracts, Fifteenth International Conference on the Physics of Electronic and Atomic Collisions (XVICPEAC), Brighton, United Kingdom, July 22–28 (1987), p. 74.Google Scholar
  54. 54._E. Merzbacher, private communication.Google Scholar
  55. M. J. Beran and G. B. Parrent Jr., Theory of Partial Coherence (Prentice Hall, Englewood Cliffs, New Jersey, 1964), pp. 138–142.Google Scholar
  56. 55.
    F. Selleri, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • A. J. Duncan
    • 1
  1. 1.Atomic Physics LaboratoryUniversity of StirlingStirlingScotland

Personalised recommendations