Coherence in Grazing Ion-Surface Collisions

  • H. Winter
  • R. Zimny
Part of the Physics of Atoms and Molecules book series (PIDF)


Coherence in atomic collisions is closely related to symmetry and selection of parameters that specify the collision process like impact parameter, plane of scattering, and final target states. In general, coincidence methods are used in the experiments to achieve these conditions, and in most cases a large degree of coherence in collisional excited terms is observed. A number of studies on this topic are discussed throughout this volume. This type of (time-consuming) experiment provides detailed information on the interaction processes and exhibit sensitive tests of theoretical approaches.


Charge Exchange Rest Frame Orbital Angular Momentum Stokes Parameter Neutral Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. J. Andrä, Phys. Rev. Lett. 25, 325 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    H. G. Berry, L. J. Curtis, D. G. Ellis, and R. M. Schectmann, Phys. Rev. Lett. 32, 751 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    D. G. Ellis, J. Opt. Soc. Am. 63, 1322 (1973)CrossRefGoogle Scholar
  4. U. Fano and J. H. Macek, Rev. Mod. Phys. 45, 553 (1973).ADSCrossRefGoogle Scholar
  5. 4.
    H. J. Andrä, Phys. Lett. 54A, 315 (1975).ADSGoogle Scholar
  6. 5.
    U. Schriek and H. Winter, unpublished.Google Scholar
  7. 6.
    D. S. Gemmell, Rev. Mod. Phys. 46, 129 (1974).ADSCrossRefGoogle Scholar
  8. 7.
    G. Moliere, Z Naturforsch. 2a, 133 (1947).ADSGoogle Scholar
  9. 8.
    O. B. Firsov, Sov. Phys. JETP 33, 534 (1958).ADSGoogle Scholar
  10. 9.
    Y. H. Ohtsuki, K. Koyama, and Y. Yamamura, Phys. Rev. 20, 5044 (1979).ADSCrossRefGoogle Scholar
  11. 10.
    H. D. Hagstrum, Phys. Rev. 96, 336 (1954).ADSCrossRefGoogle Scholar
  12. J. W. Gadzuk, Phys. Rev. B 1, 133 (1967).Google Scholar
  13. 10a.
    E. W. Thomas, in Applied Atomic Collision Physics, edited by S. Datz, Vol. 4 (Academic Press, New York, 1983).Google Scholar
  14. 11.
    W. Pauli, in Collected Scientific Papers, edited by R. Kronig and V. F. Weisskopf (Interscience Publishers, New York, 1964), p. 549.Google Scholar
  15. 12.
    R. Brako and D. M. Newns, Vacuum 32, 39 (1982).CrossRefGoogle Scholar
  16. 12a.
    K. L. Sebastian, Phys. Rev. B 31, 6976 (1985).ADSGoogle Scholar
  17. 12b.
    R. Brako and D. M. Newns, Phys. Scr. 32, 451 (1985).ADSCrossRefGoogle Scholar
  18. 13.
    R. Fröhling and H. J. Andrä, Z Phys. A 320, 207 (1985).ADSCrossRefGoogle Scholar
  19. 14.
    W. Graser and C. Varelas, Phys. Scr. T6, 153 (1983).ADSCrossRefGoogle Scholar
  20. 15.
    R. Zimny, H. Winter, B. Becker, A. Schirmacher, and H. J. Andrä, Nucl. Instrum. Methods B 2, 252 (1984).ADSGoogle Scholar
  21. 16.
    W. Pauli, Z Phys. 36, 336 (1926).ADSzbMATHCrossRefGoogle Scholar
  22. G. Flamand, J. Math. Phys. 7, 1924 (1966).ADSCrossRefGoogle Scholar
  23. 17.
    R. Zimny, H. Hagedorn, H. Winter, and H. J. Andrä, Nucl. Instrum. Methods B 13, 601 (1986).ADSCrossRefGoogle Scholar
  24. 17a.
    N. D. Lang and W. Kohn, Phys. Rev. B 7, 354 (1973)ADSGoogle Scholar
  25. J. M. Baribeau, J. Lopez, and J. C. Le Bosse, J. Phys. C 18, 3083 (1985)ADSGoogle Scholar
  26. M. N. Read, Phys. Rev. B 32, 2677 (1985).ADSGoogle Scholar
  27. 18.
    T. P. Grozdanov and R. K. Janev, Phys. Lett. A 65, 396 (1978).ADSGoogle Scholar
  28. 19.
    J. N. M. Van Wunnik, thesis, FOM-Institute, Amsterdam (1983); J. N. M. Van Wunnik, R. Brako, K. Makashi, and D. M. Newns, Surf. Sci. 261, 618 (1983).CrossRefGoogle Scholar
  29. J. N. M. Van Wunnik and J. Los, Phys. Scr. T6, 27 (1983).ADSCrossRefGoogle Scholar
  30. H. Geerlings, thesis, FOM-Institute, Amsterdam (1986).Google Scholar
  31. 19a.
    H. Nienhaus, R. Zimny, H. Hagedorn, and H. Winter, Surf. Sci., to be published.Google Scholar
  32. 19b.
    R. Zimny, thesis, University of Münster, 1988.Google Scholar
  33. H. Winter, R. Zimny, B. Becker, A. Schirmacher, H. J. Andrä, and R. Frohling, Z Phys. A 311, 167 (1983).Google Scholar
  34. 20.
    R. Fröhling, thesis, Free University, Berlin (1983).Google Scholar
  35. 21.
    J. Neumann, S. Schubert, U. Imke, P. Varga, and W. Heiland, Europhys. Lett. 3, 859 (1987).ADSCrossRefGoogle Scholar
  36. 22.
    J. D. Jackson and H. Schiff, Phys. Rev. 89, 359 (1952).ADSCrossRefGoogle Scholar
  37. 23.
    S. Y. Leung, N. H. Tolk, W. Heiland, J. C. Tully, J. S. Kraus, and P. Hill, Phys. Rev. A 18, 447 (1978).ADSGoogle Scholar
  38. 24.
    J. Macek, Phys. Rev. A 1, 235 (1970).ADSGoogle Scholar
  39. 25.
    P. Strohmeier, unpublished.Google Scholar
  40. 26.
    M. W. Lucas, W. Steckelmacher, J. Macek, and J. E. Potter, J. Phys. B 13, 4833 (1980).ADSGoogle Scholar
  41. 27.
    H. Hagedorn, H. Nienhaus, H. Winter, G. Mank, R. VöLPEL, and E. Salzborn, to be published.Google Scholar
  42. S. T. de Zwart, T. Fried, U. Jellen, A. L. Boers, and A. G. Drentje, J. Phys. B 18, L623 (1985).Google Scholar
  43. 28.
    K. Blum, Density Matrix Theory and Applications (Plenum Press, New York, 1981).zbMATHCrossRefGoogle Scholar
  44. 29.
    H. J. Andrä, R. Fröhling, and H. J. Plöhn, in Inelastic Ion-Surface Collisions, edited by N. H. Tolk, J. C. Tully, W. Heiland, and C. W. White (Academic, New York, 1977), p. 329.Google Scholar
  45. 30.
    H. J. Andrä and H. Winter, Hyperfine Int. 5, 403 (1978).ADSCrossRefGoogle Scholar
  46. H. Winter and H. J. Andrä, Phys. Rev. A 21, 581 (1980).ADSGoogle Scholar
  47. 31.
    H. J. Andrä, H. J. Plöhn, A. Gaupp, and R. Fröhling, Z. Phys. A 281, 15 (1977).ADSGoogle Scholar
  48. H. Winter and R. Zimny, Hyperfine Int. 22, 237 (1985).ADSCrossRefGoogle Scholar
  49. 32.
    D. A. Church, C. S. Lee, and J. Lenoir, Phys. Rev. Lett. 53, 1394 (1984).ADSCrossRefGoogle Scholar
  50. 32a.
    J. Hermann, J. Gehring, and V. Kempter, Surf. Sci. 171, 377 (1986).ADSCrossRefGoogle Scholar
  51. 33.
    N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, and S. H. Neff, Phys. Rev. Lett. 41, 643 (1978).ADSCrossRefGoogle Scholar
  52. 33a.
    J. Lenoir, J. Liu, and D. A. Church, Nucl. Instrum. Methods B 24/25, 312 (1987).ADSGoogle Scholar
  53. 34.
    H. J. Andrä, R. Zimny, H. Winter, and H. Hagedorn, Nucl. Instrum. Methods B 9, 572 (1985).ADSCrossRefGoogle Scholar
  54. 35.
    R. Brako, Phys. Rev. B 30, 5629 (1984).ADSGoogle Scholar
  55. 36.
    J. C. Tully, N. H. Tolk, J. S. Krauss, C. Rau, and R. J. Morris, in Inelastic Particle-Surface Collisions, edited by E. Taglauer and W. Heiland, Springer Series in Chemical Physics 17 (Springer, Berlin, 1981), p. 196.Google Scholar
  56. 36a.
    H. Winter and H. W. Ortjohann, Rev. Sci. Instrum. 58, 359 (1987).ADSCrossRefGoogle Scholar
  57. 37.
    R. Brako and D. M. Newns, in Proceedings of the ICPEAC, edited by H. B. Gilbody et al. (Elsevier, Amsterdam, 1988), p. 801.Google Scholar
  58. 38.
    J. Burgdörfer and E. Kupfer, Phys. Rev. Lett. 57, 2649 (1986).ADSCrossRefGoogle Scholar
  59. 39.
    J. Burgdörfer, E. Kupfer, and H. Gabriel, Phys. Rev. A 35, 4963 (1987).ADSGoogle Scholar
  60. 39a.
    C. Rau and R. Sizmann, Phys. Lett. 43A, 317 (1973).ADSGoogle Scholar
  61. 39b.
    C. Rau, J. Magn. Magn. Mater. 30, 14 (1982).CrossRefGoogle Scholar
  62. 39c.
    E. Kupfer, H. Gabriel, and H. Schröder, Z Phys. A 283, 321 (1977).ADSGoogle Scholar
  63. 39d.
    H. Winter, H. Hagedorn, R. Zimny, H. Nienhaus, and J. Kirschner, Phys. Rev. Lett., to be published.Google Scholar
  64. 39e.
    G. S. Harbinson, B. W. Farmery, H. J. Pabst, and M. W. Thompson, Radiat. Eff. 27, 97 (1975).CrossRefGoogle Scholar
  65. 39f.
    C. Varelas, K. Goltz, and R. Sizmann, Ned. Tijdschr. Vacuumtech. 16, 340 (1978).Google Scholar
  66. C. Varelas and R. Sizmann, Surf Sci. 71, 51 (1978). 39g.ADSCrossRefGoogle Scholar
  67. N. H. Tolk, J. C. Tully, J. S. Kraus, W. Heiland, and S. H. Neff, Surf. Sci. 90, 447 (1979).ADSCrossRefGoogle Scholar
  68. H. H. Andrä, H. Winter, R. Fröhling, N. Kirchner, H. J. Plöhn, W. Wittmann, W. Graser, and C. Varelas, Nucl. Instrum. Methods 170, 527 (1980).ADSCrossRefGoogle Scholar
  69. H. Obermeyer, K. Snowdon, H. Hemme, and W. Heiland, Z Phys. B 61, 187 (1985).ADSCrossRefGoogle Scholar
  70. 40.
    H. Winter and H. J. Andrä, Hyperfine Int. 24, 277 (1985).ADSCrossRefGoogle Scholar
  71. 41.
    E. Taute, Phys. Stat. Sol. B 142, 437 (1987).ADSGoogle Scholar
  72. 41a.
    H. Winter, M. Langheim, A. Schirmacher, R. Zimny, and H. J. Andrä, Phys. Rev. Lett. 52, 1211 (1984).ADSCrossRefGoogle Scholar
  73. 42.
    M. Ducloy and M. Dumont, J. Phys. (Paris) 31, 419 (1970).CrossRefGoogle Scholar
  74. 43.
    H. Schröder, Nucl. Instrum. Methods B 2, 213 (1984).ADSCrossRefGoogle Scholar
  75. 44.
    E. G. Overbosch, B. Rasser, A. D. Tenner, and J. Los, Surf. Sci. 92, 310 (1980).ADSCrossRefGoogle Scholar
  76. 45.
    M. Remy, J. Chem. Phys. 53, 2487 (1970).ADSCrossRefGoogle Scholar
  77. 46.
    S. I. Easa and A. Modinos, Surf. Sci. 183, 531 (1987).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • H. Winter
    • 1
  • R. Zimny
    • 1
  1. 1.Institute for Nuclear PhysicsUniversity of MünsterMünsterWest Germany

Personalised recommendations