Excitation in Ion-Atom Collisions

  • Uwe Wille
Part of the Physics of Atoms and Molecules book series (PIDF)

Abstract

The subject of electronic excitation in ion-atom collisions has a longstanding history and still continues to be one of the most active fields of research in atomic physics. Any attempt to give in the present chapter a complete survey of this subject would be a hopeless task. Accordingly, the selection of the material discussed here has been guided solely by the author’s personal interests and by the desire to address, to a certain extent, topics that bear a direct relation to the title of this volume, that is, coherence in atomic collision physics. Strictly speaking, the wave-mechanical nature of atomic physics entails any collision process to be at least partially coherent. In most situations, however, this coherence is not directly reflected in the observed features of the collision. Our aim therefore is to emphasize those cases in which coherence properties of the collision are explicitly revealed, e.g., through interference effects due to the (coherent) superposition of contributions to the excitation amplitude from different excitation mechanisms. Following the author’s inclination, a major part of the specific examples considered deals with inner-shell processes in heavy-ion-atom collisions.

Keywords

Impact Parameter Internuclear Distance Rydberg State Collision System Rotational Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Madison and E. Merzbacher, in Atomic Inner-Shell Processes edited by B. Crasemann (Academic, New York, 1975), Vol. I, pp. 1–72.Google Scholar
  2. 2.
    P. Richard, in Atomic Inner-Shell Processes, edited by B. Crasemann (Academic, New York, 1975), Vol. I, pp. 73–158.Google Scholar
  3. 3.
    U. Wille and R. Hippler, Mechanisms of Inner-Shell Vacancy Production in Slow Ion-Atom Collisions, Phys. Rep. 132, 129–260 (1986).ADSGoogle Scholar
  4. 4.
    J. S. Briggs, The Excitation of Inner Shells in Slow Atomic Collisions, Rep. Prog. Phys. 39, 217–289 (1976).ADSGoogle Scholar
  5. 5.
    G. B. Schmid, Transformation Theory and Translational Factors in Inelastic Atomic Collisions, Phys. Rev. A 15, 1459–1468 (1977).ADSGoogle Scholar
  6. 6.
    G. Ciocchetti, A. Molinari, and R. Malvano, A Method to Determine the Lifetime of a Nuclear State by Measuring the K-Shell Ionization Probability, Nuovo Cimento 29, 1262–1274 (1963).Google Scholar
  7. 7.
    P. A. Amundsen, On the Role of Dipole Transitions in the Semiclassical Approximation for K-Shell Ionization, J. Phys. B: At. Mol. Phys. 11, 3197–3220 (1978).ADSGoogle Scholar
  8. 8.
    M. Kleber and K. Unterseer, Dynamical Treatment of Binding, Polarization and Recoil in Asymmetric Ion-Atom Collisions, Z Phys. A 292, 311–318 (1979).ADSGoogle Scholar
  9. 9.
    F. Rösel, D. Trautmann, and G. Baur, Recoil Effects in Atomic Inner Shell Ionization, Nucl. Instrum. Methods 192, 43–52 (1982).Google Scholar
  10. 10.
    W. Fritsch, Atomic Orbital Expansion Description for Slow Ion-Atom Collisions: A Curved-Line Trajectory Study, J. Phys. B: At. Mol. Phys. 15, L389–L393 (1982).ADSGoogle Scholar
  11. 11.
    W. Fritsch and C. D. Lin, in Electronic and Atomic Collisions, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (North-Holland, Amsterdam, 1984), pp. 331–342.Google Scholar
  12. 12.
    D. G. M. Anderson, M. J. Antal, and M. B. Mcelroy, The Triple-Center Expansion for Charge Exchange in Atomic Scattering Theory, J. Phys. B: At. Mol. Phys. 7, L118–L121 (1974).ADSGoogle Scholar
  13. 13.
    T. G. Winter and C. D. Lin, Triple-Center Treatment of Ionization in p-H Collisions, Phys. Rev. A 29, 3071–3077 (1984).ADSGoogle Scholar
  14. 14.
    I. M. Cheshire, D. F. Gallaher, and A. J. Taylor, Coupled-State Calculations of Proton-Hydrogen Scattering with a Pseudo-State Expansion, J. Phys. B: At. Mol. Phys. 3, 813–832 (1970).ADSGoogle Scholar
  15. 15.
    W. Fritsch and C. D. Lin, Close-Coupling Calculations for Inelastic Processes in Intermediate Energy Ion-Atom Collisions, J. Phys. B: At. Mol. Phys. 15, 1255–1268 (1982).ADSGoogle Scholar
  16. 16.
    H. Nakamura and M. Namiki, Semiclassical Theory of Rotationally Induced Non-adiabatic Transitions, Phys. Rev. A 24, 2963–2974 (1981).ADSGoogle Scholar
  17. 17.
    H. Nakamura, Dynamical-State Representation and Nonadiabatic Electronic Transitions in Atomic Collisions, Phys. Rev. A 26, 3125–3136 (1982).ADSGoogle Scholar
  18. 18.
    S. B. Schneiderman and A. Russek, Velocity-Dependent Orbitals in Proton-on-Hydrogen-Atom Collisions, Phys. Rev. 181, 311–321 (1969).ADSGoogle Scholar
  19. 19.
    J. S. Briggs, Perturbed United-Atom Description of Direct Ionization in Slow Heavy Ion-Atom Collisions, J. Phys. B: At. Mol. Phys. 8, L485–L488 (1975).ADSGoogle Scholar
  20. 20.
    M. Kimura and C. D. Lin, Unified Treatment of Slow Atom-Atom and Ion-Atom Collisions, Phys. Rev. A 31, 590–592 (1985).ADSGoogle Scholar
  21. 21.
    M. Kimura and C. D. Lin, Charge Transfer and Excitation Processes in p-He Collisions Studied Using a Unified Atomic-Orbital-Molecular-Orbital Matching Method, Phys. Rev. A 34, 176–184 (1986).ADSGoogle Scholar
  22. 22.
    T. G. Winter and N. F. Lane, “A-Matrix” Approach to Electron Transfer in α-H Collisions, Phys. Rev. A 31, 2698–2701 (1985).ADSGoogle Scholar
  23. 23.
    J. Bang and J. M. Hansteen, Coulomb Deflection Effects on Ionization and Pair-Production Phenomena, Mat. Fys. Medd. Dan. Vid. Selsk. 31(13), 1–43 (1959).Google Scholar
  24. 24.
    H. Schmidt-Böcking, K. E. Stiebing, W. Schadt, N. Löchter, G. Gruber, S. Kelbch, and K. Bethge, Trajectory, Binding and Relativistic Effects in the K-Shell Ionization Process Investigated by Particle-Photon Coincidences, Nucl Instrum. Methods 192, 71–77 (1982).ADSGoogle Scholar
  25. 25.
    D. Trautmann, F. Rösel, and G. Baur, Accurate Calculation of Inner-Shell Ionization, Nucl. Instrum. Methods 214, 21–27 (1983).Google Scholar
  26. 26.
    L. H. Andersen, P. Hvelplund, H. Knudsen, S. P. Møller, K. Elsener, K.-G. Rensfelt, and E. Uggerhøj, Single and Double Ionization of Helium by Fast Antiproton and Proton Impact, Phys. Rev. Lett. 57, 2147–2150 (1986).ADSGoogle Scholar
  27. 27.
    W. Jitschin, this volume, Chapter 6.Google Scholar
  28. 28.
    J. U. Andersen, E. Laegsgaard, M. Lund, and C. D. Moak, Z1-Scaling for Impact-Parameter Dependence of Inner-Shell Ionization by Heavy Ions, Nucl. Instrum. Methods 132, 507–515 (1976).ADSGoogle Scholar
  29. 29.
    J. U. Andersen, E. Laegsgaard, and M. Lund, Impact-Parameter Dependence of K-Shell Ionization, Nucl. Instrum. Methods 192, 79–101 (1982).ADSGoogle Scholar
  30. 30.
    M. Kleber and J. Zwiegel, Variational Method for Electron Excitation in Ion-Atom Collisions, Z Phys. A 280, 137–142 (1977).ADSGoogle Scholar
  31. 31.
    K. Unterseer and M. Kleber, Dynamics of Inner-Shell Electrons in Ion-Atom Collisions, Nucl. Instrum. Methods 192, 35–41 (1982).ADSGoogle Scholar
  32. 32.
    A. Jakob, D. Trautmann, F. Rösel, and G. Baur, Wave Function Effects in Inner-Shell Ionization, Nucl. Instrum. Methods 232 [B4], 218–226 (1984).Google Scholar
  33. 33.
    J. Seidel, S. Röhl, R. Lorek, S. Huchler, and M. Dost, K-Shell Ionization by 16O and 32S Ions: Reduced-Velocity Dependence of the Binding Effect, Phys. Rev. A 32, 2142–2149 (1985).ADSGoogle Scholar
  34. 34.
    L. Sarkadi and T. Mukoyama, Higher Order Processes in L-Shell Ionization, Nucl. Instrum. Methods 232 [B4], 296–302 (1984).Google Scholar
  35. 35.
    L. Sarkadi, L 3-Subshell Alignment Calculations in the Second-Order Bora Approximation for Light-and Heavy-Ion Impact on Au, J. Phys. B: At. Mol. Phys. 19, 2519–2530 (1986).ADSGoogle Scholar
  36. 36.
    L. Sarkadi, Coupled-State Analysis of the Heavy-Ion-Induced L 3-Subshell Alignment, J. Phys. B: At. Mol. Phys. 19, L755–L759 (1986).ADSGoogle Scholar
  37. 37.
    S. Zehendner, G. B. Baptista, R. Dörner, E. Justiniano, J. Konrad, H. Schmidt-Böcking, and R. Schuch, Impact Parameter Dependence of the L-Subshell Ionization Probabilities and of the L 3-Subshell Alignment Tensor Components in 4 MeV p-Sm Collisions, Z. Phys. D At. Mol. Clusters 4, 243–247 (1987).Google Scholar
  38. 38.
    K. Dexheimer, J. Ullrich, K. E. Stiebing, W. Schadt, S. Kelbch, C. Kelbch, R. Schuch, S. Zehendner, and H. Schmidt-Böcking, Experimental Evidence for Vacancy Sharing between L Subshells in Very Asymmetric Ion-Atom Collisions, J. Phys. B: At. Mol. Phys. 19, 3083–3090 (1986).ADSGoogle Scholar
  39. 39.
    H. Schmidt-Böcking, J. Ullrich, R. Dörner, K. Dexheimer, S. Kelbch, V. Dangendorf, R. Schuch, S. Zehendner, S. Hagmann, and G. B. Baptista, L-Subshell Ionization Probabilities in Very Asymmetric Ion-Atom Collisions, Nucl. Instrum. Methods B 24/25, 64–68 (1987)ADSGoogle Scholar
  40. 40.
    W. E. Meyerhof and K. Taulbjerg, K-Shell Ionization in Heavy-Ion Collisions, Ann. Rev. Nucl. Sci. 27, 279–332 (1977).ADSGoogle Scholar
  41. 41.
    K. Taulbjerg, J. S. Briggs, and J. Vaaben, Inner-Shell Excitation in Heteronuclear Collisions III. A Scaling Law for Differential and Total Cross Sections for K-Shell Excitation, J. Phys. B: At. Mol. Phys. 9, 1351–1371 (1976).ADSGoogle Scholar
  42. 42.
    N. Luz, S. Sackmann, and H. O. Lutz, Impact-Parameter Dependence of K-Shell Excitation in Slow Ion-Atom Collisions, J. Phys. B: At. Mol. Phys. 12, 1973–1993 (1979).ADSGoogle Scholar
  43. 43.
    R. Frekers and H. Schulze, private communication (1986).Google Scholar
  44. 44.
    B. Thies, B. Fricke, W.-D. Sepp, and H. Härtung, New Calculations of P(b) Curves for 1sσ Excitation in Low-Z (Z ≤ 10) Ion-Atom Scattering, J. Phys. B: At. Mol. Phys. 19, L617–L621 (1986).ADSGoogle Scholar
  45. 45.
    R. Shanker, R. Bilau, R. Hippler, U. Wille, and H. O. Lutz, Impact Parameter Dependence of Ar L-Shell Excitation in Slow Ar-Ar Collisions, J. Phys. B: At. Mol. Phys. 14, 997–1007 (1981).ADSGoogle Scholar
  46. 46.
    R. Shanker, R. Hippler, U. Wille, R. Bilau, and H. O. Lutz, 3dσ Excitation in Slow Ne-Ar Collisions, Z. Phys. A Atoms Nuclei 313, 281–288 (1983).ADSGoogle Scholar
  47. 47.
    R. Bilau, W. R. Mcmurray, U. Wille, R. Shanker, R. Hippler, and H. O. Lutz, 3dσ Excitation in Slow Ar-Kr Collisions, Z Phys. D At. Mol. Clusters 1, 39–46 (1986).Google Scholar
  48. 48.
    G. Presser, J. Stähler, R. Werner, and U. Wille, Impact Parameter Dependence of L-Shell Excitation in 17 to 40 MeV Ag + Ag and Ag + Cs Collisions, J. Phys. B: At. Mol. Phys. 16, 197–214 (1983).ADSGoogle Scholar
  49. 49.
    E. Morenzoni, M. Nessi, P. Bürgy, Ch. Stoller, and W. Wölfli, Impact Parameter Dependence of L-and K-Shell Excitation in I-Ag Collisions, Z. Phys. A At. Nuclei 311, 7–17 (1983).ADSGoogle Scholar
  50. 50.
    R. Shanker, R. Hippler, U. Wille, R. Bilau, and H. O. Lutz, Evidence for Rotationally Induced 4fσ Excitation in Slow Kr-Xe and Kr-Kr Collisions, J. Phys. B: At. Mol. Phys. 15, L495–L500 (1982).ADSGoogle Scholar
  51. 51.
    R. Shanker, U. Wille, R. Bilau, R. Hippler, W. R. Mcmurray, and H. O. Lutz, 4fσ Excitation in Slow Kr-Kr and Kr-Xe Collisions, J. Phys. B: At. Mol. Phys. 17, 1353–1371 (1984).ADSGoogle Scholar
  52. 52.
    R. Frekers, H. Schulze, U. Wille, and B. Cleff, Impact Parameter Dependence of L-Shell Vacancy Production in Slow Kr-Kr and Xe-Xe Collisions, Z Phys. D At. Mol. Clusters 6, 131–144 (1987).Google Scholar
  53. 53.
    A. Niehaus, in Atomic Inner-Shell Physics, edited by B. Crasemann (Plenum, New York, 1985), pp. 377–416.Google Scholar
  54. 54.
    P. H. Mokler, D. H. H. Hoffmann, W. A. Schönfeldt, D. Maor, W. E. Meyerhof, and Z. Stachura, Atomic Collision Studies at Moderate Projectile Velocities Using Highly Charged, Decelerated Heavy Ions from the GSI-Unilac, Nucl Instrum. Methods 232 [B4], 34–39 (1984).Google Scholar
  55. 55.
    R. Schuch, H. Ingwersen, E. Justiniano, H. Schmidt-Böcking, M. Schulz, and F. Ziegler, Interference Effects in K Vacancy Transfer of Hydrogen-Like S Ions Colliding with Ar, J. Phys. B: At Mol. Phys. 17, 2319–2338 (1984).ADSGoogle Scholar
  56. 56.
    W. Lichten, Resonant Charge Exchange in Atomic Collisions. II. Further Applications and Extensions to the Quasi-Resonant Case, Phys. Rev. 139, A27–A34 (1965).ADSGoogle Scholar
  57. 57.
    S. Hagmann, C. L. Cocke, J. R. Mcdonald, P. Richard, H. Schmidt-Böcking, and R. Schuch, Quasiresonant Charge Transfer in Inner-Shell Excitation: Impact Parameter Dependence of K-Vacancy Creation in F q+ → Ne Collisions, Phys. Rev. A 25, 1918–1929 (1982).ADSGoogle Scholar
  58. 58.
    N. Stolterfoht, Model Calculations of Charge Exchange between K Shells in Near-Symmetric Ion-Atom Collisions, J. Phys. B: At. Mol. Phys. 16, 2385–2397 (1986).ADSGoogle Scholar
  59. 59.
    N. Stolterfoht, in Progress in Atomic Spectroscopy, Part D, edited by H. J. Beyer and H. Kleinpoppen (Plenum, New York, 1987), pp. 415–476.Google Scholar
  60. 60.
    N. Grün, private communication to R. Schuch et al. (as cited in Ref. 55).Google Scholar
  61. 61.
    W. Fritsch and C. D. Lin, Close-Coupling Study of K-Shell Vacancy Production in Near-Symmetric Collisions, Phys. Rev. A 31, 1164–1167 (1985).ADSGoogle Scholar
  62. 62.
    S. Hagmann, C. L. Cocke, P. Richard, A. Skutlartz, S. Kelbch, H. Schmidt-Böcking, and R. Schuch, in Electronic and Atomic Collisions, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (North-Holland, Amsterdam, 1984), pp. 385–392.Google Scholar
  63. 63.
    M. Schulz, E. Justiniano, J. Konrad, R. Schuch, and A. Salin, K-Shell to K- Shell Charge Transfer in Collisions of Bare, Decelerated S Ions with Ar, J. Phys. B: At. Mol. Phys. 20, 2057–2073 (1987).ADSGoogle Scholar
  64. 64.
    R. Anholt, X-Rays from Quasimolecules, Rev. Mod. Phys. 57, 995–1053 (1985).ADSGoogle Scholar
  65. 65.
    W. Fritsch and U. Wille, Theory of Collision Broadening in Molecular-Orbital X-Ray Spectra, Jpn. J. Appl. Phys. Suppl. 17-2, 387–392 (1978).Google Scholar
  66. 66.
    W. Fritsch and U. Wille, On the Theory of Molecular-Orbital X-Rays, J. Phys. B: At. Mol. Phys. 12, L335–L340 (1979).ADSGoogle Scholar
  67. 67.
    A. Z. Devdariani, U. N. Ostroskii, and A. Niehaus, Analytical Formulae for Spectral Shapes Arising from Emission during Atom-Atom Collisions, J. Phys. B: At. Mol. Phys. 18, L161–L166 (1985)ADSGoogle Scholar
  68. 68.
    I. Tserruya, R. Schuch, H. Schmidt-Böcking, J. Barrette, Wang Da-Hai, B. M. Johnson, K. W. Jones, and M. Meron, Interference Effects in the Quasimolecular K X-Ray Production Probability for 10 MeV Cl16+-Ar Collisions, Phys. Rev. Lett. 50, 30–33 (1983).ADSGoogle Scholar
  69. 69.
    R. Schuch, H. Schmidt-Böcking, I. Tserruya, B. M. Johnson, K. W. Jones, and M. Meron, X-Ray Spectroscopy of Cl-Ar Quasi-Molecular Orbitals from 1sσ-2pπ Transitions, Z. Phys. A At. Nuclei 320, 185–189 (1985).ADSGoogle Scholar
  70. 70.
    R. Schuch, R. Hoffmann, B. M. Johnson, K. W. Jones, M. Meron, H. Schmidt-Böcking, and I. Tserruya, Quasimolecular X-Ray Spectroscopy for Slow Cl16+-Ar Collisions, Phys. Rev. A 37 (1988).Google Scholar
  71. 71.
    D. Liesen, A. N. Zinoviev, and F. W. Saris, Oscillations in Coincident Molecular-Orbital Auger Spectra Emitted in 450-keV Kr+4-Kr Collisions, Phys. Rev. Lett. 47, 1392–1395 (1981).ADSGoogle Scholar
  72. 72.
    V. V. Afrosimov, G. G. Meskhi, N. N. Tsarev, and A. P. Shergin, Auger Spectroscopy of Quasimolecules, Zh. Eksp. Teor. Fiz. 84, 454–465 (1983) [Sov. Phys. JETP 57, 263-269 (1983)].ADSGoogle Scholar
  73. 73.
    A. P. Shergin, R. Stötzel, Z. Roller, R. Bilau, and H. O. Lutz, Impact-Energy Dependence of Quasimolecular Auger Emission in Kr-Kr Collisions, Phys. Rev. A 34, 4490–4492 (1986).ADSGoogle Scholar
  74. 74.
    G. Ciocchetti and A. Molinari, K Electron Shell Ionization and Nuclear Reactions, Nuovo Cimento 40B, 69–86 (1965).ADSGoogle Scholar
  75. 75.
    W. E. Meyerhof, in Electronic and Atomic Collisions, edited by J. Eichler, I. V. Hertel, and N. Stolterfoht (North-Holland, Amsterdam, 1984), pp. 31–49.Google Scholar
  76. 76.
    W. E. Meyerhof and J.-F. Chemin, Nuclear Reaction Effects on Atomic Inner-Shell Ionization, Adv. At. Mol. Phys. 20, 173–239 (1985).ADSGoogle Scholar
  77. 77.
    R. Anholt, in Atomic Inner-Shell Physics, edited by B. Crasemann (Plenum, New York, 1985), pp. 581–625.Google Scholar
  78. 78.
    J. S. Blair, P. Dyer, K. A. Snover, and T. A. Trainor, Nuclear “Time-Delay” and X-Ray-Proton Coincidences near a Nuclear Scattering Resonance, Phys. Rev. Lett. 41, 1712–1715 (1978).ADSGoogle Scholar
  79. 79.
    W. Duinker, J. van Eck, and A. Niehaus, Experimental Evidence for the Influence of Inner-Shell Ionization on Resonant Nuclear Scattering, Phys. Rev. Lett. 45, 2102–2105 (1980).ADSGoogle Scholar
  80. 80.
    J. F. Chemin, R. Anholt, Ch. Stoller, W. E. Meyerhof, and P. A. Amundsen, Measurement of 88Sr K-Shell Ionization Probability across the Nuclear Elastic-Scattering Resonance at 5060 keV, Phys. Rev. A 24, 1218–1222 (1981).ADSGoogle Scholar
  81. 81.
    J. F. Chemin, W. E. Meyerhof, R. Anholt, J. D. Molitoris, and Ch. Stoller, Measurement of the K-Shell Ionization Probability across a Wide Resonance: 88Sr (p, p 0) at 6.06 MeV, Phys. Rev. A 26, 1239–1242 (1982).ADSGoogle Scholar
  82. 82.
    M. Dost, R. Lorek, S. Röhl, J. Seidel, and W. Koenig, K-Shell Ionization Probability in Elastic Proton Scattering on 138Ba through an f 7/2 Isobaric-Analog Resonance, Phys. Rev. A 32, 2077–2087 (1985).ADSGoogle Scholar
  83. 83.
    D. W. Spooner, Ch. Stoller, J.-F. Chemin, W. E. Meyerhof, J.-N. Scheurer, and X.-Y. Xu, Large Resonance Effect in K- Shell Ionization Probability in Elastic Proton Backscattering on 138Ba, Phys. Rev. Lett. 58, 341–344 (1987).ADSGoogle Scholar
  84. 84.
    J. N. Scheurer, O. K. Baker, and W. E. Meyerhof, Large Angle Scattering and Nuclear Resonance Effect in Electron Capture in H+-C and H+-N Collisions, J. Phys. B: At. Mol. Phys. 18, L85–L89 (1985).ADSGoogle Scholar
  85. 85.
    E. Horsdal, B. Jensen, and K. O. Nielsen, Experimental Study of Charge Transfer near a Nuclear-Scattering Resonance, Phys. Rev. Lett. 57, 675–678 (1986).ADSGoogle Scholar
  86. 86.
    R. Anholt, Electronic 1sσ Vacancy Production in Deep-Inelastic Nuclear Reactions, Phys. Lett. 88B, 262–264 (1979).ADSGoogle Scholar
  87. 87.
    U. Müller, J. Reinhardt, G. Soff, B. Müller, and W. Greiner, K-Vacancy Production in Deep-Inelastic Nuclear Reactions, Z Phys. A At. Nuclei 297, 357–358 (1980).ADSGoogle Scholar
  88. 88.
    Ch. Stoller, J. F. Chemin, R. Anholt, W. E. Meyerhof, and W. Wölfli, X-Ray Study of the Deep Inelastic Reactions 1160 MeV 136Xe + Pb and 136Xe + 232Th, Z Phys. A At. Nuclei310, 9–17 (1983).ADSGoogle Scholar
  89. 89.
    Ch. Stoller, M. Nessi, E. Morenzoni, W. Wölfli, W. E. Meyerhof, J. D. Molitoris, E. Grosse, and Ch. Michel, Nuclear Reaction Times in the Deep-Inelastic U + U Collision Deduced from K- Shell Ionization Probabilities, Phys. Rev. Lett.53, 1329–1332 (1984).ADSGoogle Scholar
  90. 90._J. D. Molitoris, Nuclear Time Delay Effects on K-Vacancy Production in Deep-Inelastic U + U Collisions, Ph.D. thesis, Stanford University (1986).Google Scholar
  91. 91.
    H. Backe, P. Senger, W. Bonin, E. Kankeleit, M. Krämer, R. Krieg, V. Metag, N. Trautmann, and J. B. Wilhelmy, Estimates of the Nuclear Time Delay in Dissipative U + U and U + Cm Collisions Derived from the Shape of Positron and δ-Ray Spectra, Phys. Rev. Lett. 50, 1838–1841 (1983).ADSGoogle Scholar
  92. 92.
    J. Reinhardt, B. Müller, W. Greiner, and G. Soff, Delta Electrons: An Atomic Clock for Deep-Inelastic Collisions, Z. Phys. A 292, 211–212 (1979).ADSGoogle Scholar
  93. 93.
    G. Soff, J. Reinhardt, B. Müller, and W. Greiner, Delta-Electron Emission in Deep-Inelastic Heavy-Ion Collisions, Phys. Rev. Lett. 43, 1981–1984 (1979).ADSGoogle Scholar
  94. 94.
    P. Senger, H. Backe, M. Begemann-Blaich, H. Bokemeyer, P. Glässel, D. v. Harrach, M. Klüver, W. Konen, K. Poppensieker, K. Stiebing, J. Stroth, and K. Wallenwein, Nuclear Contact Times in Dissipative Heavy Ion Collisions Measured via δ-Ray Spectroscopy, Preprint No. GSI-86-51 (1986).Google Scholar
  95. 95.
    J. Kirsch, B. Müller, and W. Greiner, MO-Radiation Interference Phenomena as a “Clock” for Nuclear Reaction Times, Z Phys. D At. Mol. Clusters 1, 47–50 (1986).Google Scholar
  96. 96.
    J. Kirsch, B. Müller, and W. Greiner Atomic and Molecular Physics Close to Ionization Thresholds in High Fields, edited by J. P. Connerade, J. C. Gay, and S. Liberman, J. Phys. (Paris) 43, C2 (1982).Google Scholar
  97. 97.
    G. Ferrante, in Fundamental Processes in Energetic Atomic Collisions, edited by H. O. Lutz, J. S. Briggs, and H. Kleinpoppen (Plenum, New York, 1983), pp. 585–610.Google Scholar
  98. 98.
    G. Ferrante, in Fundamental Processes in Atomic Collision Physics, edited by H. Kleinpoppen, J. S. Briggs, and H. O. Lutz (Plenum, New York, 1985), pp. 343–395.Google Scholar
  99. 99.
    M. R. C. Mcdowell and M. Zarcone, Scattering in Strong Magnetic Fields, Adv. At. Mol. Phys. 21, 255–304 (1985).ADSGoogle Scholar
  100. 100.
    H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms (Academic, New York, 1957).MATHGoogle Scholar
  101. 101.
    D. Park, Relation between the Parabolic and Spherical Eigenfunctions of Hydrogen, Z. Phys. 159, 155–157 (1960).ADSGoogle Scholar
  102. 102.
    H. J. Andrä, in Progress in Atomic Spectroscopy, Part B, edited by W. Hanle and H. Kleinpoppen (Plenum, New York, 1979), pp. 829–953.Google Scholar
  103. 103.
    E. H. Pinnington, H. G. Berry, J. Desesquelles, and J. L. Subtil, Stark Effect Modulations in He II and Li III, Nucl. Instrum. Methods 110, 315–320 (1973).ADSGoogle Scholar
  104. 104.
    C. F. Moore, W. J. Braithwaite, and D. L. Matthews, Electric Field Induced Structure in X-Ray Yields from Highly Ionized Oxygen Atoms, Phys. Lett. 47A, 353–354 (1974).ADSGoogle Scholar
  105. 105.
    P. Richard, C. L. Cocke, S. J. Czuchlewski, K. A. Jamison, R. L. Kauffman, and C. W. Woods, Observation of Stark Beats in the H-Like K X Rays of Oxygen and Fluorine, Phys. Lett. 47A, 355–356 (1974).ADSGoogle Scholar
  106. 106.
    Z. Vager, E. P. Kanter, D. Schneider, and D. S. Gemmell, Coherent Stark Levels in Beam-Foil-Excited Fast Rydberg Atoms, Phys. Rev. Lett. 50, 954–957 (1983).ADSGoogle Scholar
  107. 107.
    E. P. Kanter, D. Schneider, Z. Vager, D. S. Gemmell, B. J. Zabransky, Gu Yuan-Zhuang, P. Arcuni, P. M. Koch, D. R. Mariani, and W. Van De Water, Lonization of Fast Foil-Excited Ion Beams in Electromagnetic Fields, Phys. Rev. A 29, 583–594 (1984).ADSGoogle Scholar
  108. 108.
    D. Schneider, W. Zeitz, R. Kowallik, G. Schiwietz, T. Schneider, N. Stolterfoht, and U. Wille, Effects of External Electric Fields on High Rydberg States Formed in Foil and Gas Interactions of 85-MeV Ne6+ Ions, Phys. Rev. A 34, 169–175 (1986).ADSGoogle Scholar
  109. 109.
    R. Kowallik, Messungen von Quanteninterferenzen an schnellen Rydbergionen in elektrischen Feldern, Diploma thesis, Free University of Berlin (1986).Google Scholar
  110. 110.
    W. Zeitz, R. Kowallik, and D. Schneider, unpublished.Google Scholar
  111. 111.
    T. Seideman, M. Shapiro, and Z. Vager, Theory of the Coherent Decay of High-Lying Rydberg States in Beam-Foil Encounters, Phys. Rev. A 35, 87–102 (1987).ADSGoogle Scholar
  112. 112.
    R. H. Garstang, Atoms in High Magnetic Fields, Rep. Prog. Phys. 40, 105–154 (1977).ADSGoogle Scholar
  113. 113.
    D. Moss, Magnetic Fields in Stars, Phys. Rep. 140, 1–74 (1986).ADSGoogle Scholar
  114. 114.
    S. Bivona, B. Spagnolo, and G. Ferrante, in Electronic and Atomic Collisions (Abstracts of XIII ICPEAC) edited by J. Eichler, W. Fritsch, I. V. Hertel, N. Stolterfoht, and U. Wille (North-Holland, Amsterdam, 1983), p. 692.Google Scholar
  115. 115.
    S. Bivona, B. Spagnolo, and G. Ferrante, Charge Transfer in the Presence of a Strong Magnetic Field, J. Phys. B: At. Mol. Phys. 17, 1093–1106 (1984).ADSGoogle Scholar
  116. 116.
    T. P. Grosdanov and M. R. C. Mcdowell, A Classical Trajectory Monte Carlo Study of Collisions of He2+ with H in a Strong Magnetic Field, J. Phys. B: At. Mol. Phys. 18, 921–931 (1985).ADSGoogle Scholar
  117. 117.
    S. Bivona and M. R. C. Mcdowell, Asymmetric Charge Exchange in a Strong Static Magnetic Field, J. Phys. B: At. Mol. Phys. 20, 1541–1554 (1987).ADSGoogle Scholar
  118. 118.
    U. Wille, in Fundamental Processes in Atomic Collision Physics, edited by H. Klein-poppen, J. S. Briggs, and H. O. Lutz (Plenum, New York, 1985) pp. 719–727.Google Scholar
  119. 119.
    U. Wille, Vibrational and Rotational Properties of the H+ 2 Molecular Ion in a Strong Magnetic Field, J. Phys. B: At. Mol. Phys. 20, L417–L422 (1987).MathSciNetADSGoogle Scholar
  120. 120.
    U. Wille, Resonant Charge Transfer in Slow H+-H Collisions in the Presence of a Strong Magnetic Field, Phys. Lett. 125A, 52–56.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Uwe Wille
    • 1
  1. 1.Hahn-Meitner-InstitutBereich Kern- und StrahlenphysikBerlin 39West Germany

Personalised recommendations