Skip to main content

Applications of Lasers in Atomic Collision Physics

  • Chapter
  • First Online:
Coherence in Atomic Collision Physics

Part of the book series: Perspectives on Individual Differences ((PIDF))

  • 86 Accesses

Abstract

The introduction of lasers to the field of atomic collisions has provided a powerful new tool with which to investigate collision processes. Laser techniques have now been applied to the study of superelastic scattering and stepwise excitation processes, free-free transitions, photon recoil processes, Rydberg atom collisions, and spin-polarization effects. This chapter is restricted to consideration of two of these applications, namely, stepwise excitation and superelastic scattering studies of electron atom scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Blum, Density Matrix Theory and Applications (Plenum Press, New York, 1981).

    Book  Google Scholar 

  2. G. F. Hanne, Phys. Rep.95, 95 (1983).

    Article  ADS  Google Scholar 

  3. C. J. Webb, W. R. Macgillivray, and M. C. Standage, J. Phys. B: At. Mol. Phys.17, 1675 (1984).

    Article  ADS  Google Scholar 

  4. W. R. Macgillivray and M. C. Standage, Phys. Rep. (1988).

    Google Scholar 

  5. C. J. Webb, W. R. Macgillivray, and M. C. Standage, J. Phys. B: At. Mol. Phys.18, L259 (1985).

    Article  ADS  Google Scholar 

  6. I. V. Hertel and W. Stoll, Adv. At. Phys.13, 113 (1977).

    ADS  Google Scholar 

  7. H. W. Hermann and I. V. Hertel, Comments At. Mol. Phys.12, 61 (1982); 12, 127 (1982).

    Google Scholar 

  8. M. C. Standage and H. Kleinpoppen, Phys. Rev. Lett.36, 577 (1976).

    Article  ADS  Google Scholar 

  9. A. A. Zaide, S. M. Khalid, I. Mcgregor, and H. Kleinpoppen, J. Phys. B: At. Mol. Phys.14, L503 (1981).

    Article  ADS  Google Scholar 

  10. J. R. Acherhalt and J. H. Eberly, Phys. Rev. D10, 3350 (1974).

    ADS  Google Scholar 

  11. R. M. Whitley and C. R. Stroud, Phys. Rev. A14, 1498 (1976).

    Article  ADS  Google Scholar 

  12. J. R. Riley, P. J. O. Teubner, and M. J. Brunger, J. Phys. B: At. Mol. Phys.19, 129 (1986).

    Article  ADS  Google Scholar 

  13. P. M. Farrell, W. R. Macgillivray, and M. C. Standage, in preparation.

    Google Scholar 

  14. J. J. Mcclelland and M. H. Kelley, Phys. Rev. A31, 3704 (1985).

    Article  ADS  Google Scholar 

  15. M. H. Phillips, L. W. Anderson, and C. C. Lin, Phys. Rev. A23, 2751 (1981).

    Article  ADS  Google Scholar 

  16. M. H. Phillips, L. W. Anderson, C. C. Lin, and R. E. Meirs, Phys. Lett.82A, 404 (1981).

    Article  ADS  Google Scholar 

  17. R. E. Meirs, J. E. Gastineau, M. H. Phillips, L. W. Anderson, and C. C. Lin, Phys. Rev.A 25, 1185 (1982).

    Article  ADS  Google Scholar 

  18. J. O. Phelps, M. H. Phillips, L. W. Anderson, and C. C. Lin, J. Phys. B: At. Mol. Phys.16, 3825 (1983).

    Article  ADS  Google Scholar 

  19. P. W. Zetner, W. B. Westerweld, G. C. King, and J. W. Mcconkey, J. Phys. B: At. Mol. Phys.19, 4205 (1986).

    Article  ADS  Google Scholar 

  20. V. E. Dobryshin, V. I. Rakhovskii, and V. M. Shustryakov, Opt. Spectrosc.52, 364 (1982).

    ADS  Google Scholar 

  21. C. W. Mclucas, W. R. Macgillivray, and M. C Standage, Phys. Rev. Lett.48, 88 (1982).

    Article  ADS  Google Scholar 

  22. C. W. Mclucas, H. J. E. Wehr, W. R. Macgillivray, and M. C. Standage, J. Phys. B: At. Mol. Phys.15, 1883 (1982).

    Article  ADS  Google Scholar 

  23. G. F. Hanne, V. Nickich, and M. Sohn, J. Phys. B: At. Mol. Phys.18, 2037 (1985).

    Article  ADS  Google Scholar 

  24. F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajan, Phys. Rev.A 2, 1305 (1970).

    Article  ADS  Google Scholar 

  25. W. C. Fon, K. A. Berrington, P. G. Burke, and A. E. Kingston, J. Phys. B: At. Mol. Phys.14, 2921 (1981).

    Article  ADS  Google Scholar 

  26. J. C. Mcconnell and B. L. Moiseiwitsch, J. Phys. B: At. Mol. Phys.1, 406 (1968).

    Article  ADS  Google Scholar 

  27. T. W. Ottley, D. R. Denne, and H. Kleinpoppen, J. Phys. B: At. Mol. Phys.7, L179 (1974).

    Article  ADS  Google Scholar 

  28. I. C. Percival and M. J. Seaton, Phil. Trans. R. Soc. London, Ser.A 251, 113 (1958).

    Article  ADS  Google Scholar 

  29. K. Bartschat, private communication (1983).

    Google Scholar 

  30. B. Stumpf and A. Gallagher, Phys. Rev.A 32, 3344 (1985).

    Article  ADS  Google Scholar 

  31. G. W. Foltz, E. J. Beiting, T. H. Meys, K. A. Smith, F. B. Dunning, and R. F. Stebbings, Phys. Rev.A 25, 187 (1982).

    Article  ADS  Google Scholar 

  32. I. V. Hertel and W. Stoll, J. Phys. B: At. Mol. Phys.7, 583 (1974).

    Article  ADS  Google Scholar 

  33. H. W. Hermann, I. V. Hertel, W. Reiland, A. Stamatovic, and W. Stoll, J. Phys. B: At. Mol. Phys.10, 251 (1977).

    Article  ADS  Google Scholar 

  34. H. W. Hermann, I. V. Hertel, and M. H. Kelley, J. Phys. B: At. Mol. Phys.13, 3465 (1980).

    Article  ADS  Google Scholar 

  35. D. F. Register, S. Trajmar, S. W. Jensen, and R. T. Poe, Phys. Rev. Lett.41, 749 (1978).

    Article  ADS  Google Scholar 

  36. D. F. Register, S. Trajmar, G. Csanak, S. W. Jensen, M. A. Fineman, and R. T. Poe, Phys. Rev.A 28, 151 (1983).

    Article  ADS  Google Scholar 

  37. G. F. Hanne, Cz Szmytkowski, and M. van der Wiel, J. Phys. B: At. Mol. Phys.15, L109 (1982).

    Article  Google Scholar 

  38. J. J. Mcclelland, M. H. Kelley, and R. J. Celotta, Phys. Rev. Lett.55, 688 (1985).

    Article  ADS  Google Scholar 

  39. J. J. Mcclelland, M. H. Kelley, and R. J. Celotta, Phys. Rev. Lett.56, 1362 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacGillivray, W.R., Standage, M.C. (1988). Applications of Lasers in Atomic Collision Physics. In: Beyer, H.J., Blum, K., Hippler, R. (eds) Coherence in Atomic Collision Physics. Perspectives on Individual Differences. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-9745-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9745-9_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-9747-3

  • Online ISBN: 978-1-4757-9745-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics