Advertisement

Applications of Lasers in Atomic Collision Physics

  • W. R. MacGillivray
  • M. C. Standage
Part of the Physics of Atoms and Molecules book series (PIDF)

Abstract

The introduction of lasers to the field of atomic collisions has provided a powerful new tool with which to investigate collision processes. Laser techniques have now been applied to the study of superelastic scattering and stepwise excitation processes, free-free transitions, photon recoil processes, Rydberg atom collisions, and spin-polarization effects. This chapter is restricted to consideration of two of these applications, namely, stepwise excitation and superelastic scattering studies of electron atom scattering.

Keywords

Atomic Beam Incident Electron Excitation Cross Section Spin Asymmetry Partial Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Blum, Density Matrix Theory and Applications (Plenum Press, New York, 1981).zbMATHCrossRefGoogle Scholar
  2. 2.
    G. F. Hanne, Phys. Rep. 95, 95 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    C. J. Webb, W. R. Macgillivray, and M. C. Standage, J. Phys. B: At. Mol. Phys. 17, 1675 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    W. R. Macgillivray and M. C. Standage, Phys. Rep. (1988).Google Scholar
  5. 5.
    C. J. Webb, W. R. Macgillivray, and M. C. Standage, J. Phys. B: At. Mol. Phys. 18, L259 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    I. V. Hertel and W. Stoll, Adv. At. Phys. 13, 113 (1977).ADSCrossRefGoogle Scholar
  7. 7.
    H. W. Hermann and I. V. Hertel, Comments At. Mol. Phys. 12, 61 (1982); 12, 127 (1982).Google Scholar
  8. 8.
    M. C. Standage and H. Kleinpoppen, Phys. Rev. Lett. 36, 577 (1976).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Zaide, S. M. Khalid, I. Mcgregor, and H. Kleinpoppen, J. Phys. B: At. Mol. Phys. 14, L503 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    J. R. Acherhalt and J. H. Eberly, Phys. Rev. D 10, 3350 (1974).ADSGoogle Scholar
  11. 11.
    R. M. Whitley and C. R. Stroud, Phys. Rev. A 14, 1498 (1976).ADSGoogle Scholar
  12. 12.
    J. R. Riley, P. J. O. Teubner, and M. J. Brunger, J. Phys. B: At. Mol. Phys. 19, 129 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    P. M. Farrell, W. R. Macgillivray, and M. C. Standage, in preparation.Google Scholar
  14. 14.
    J. J. Mcclelland and M. H. Kelley, Phys. Rev. A 31, 3704 (1985).ADSGoogle Scholar
  15. 15.
    M. H. Phillips, L. W. Anderson, and C. C. Lin, Phys. Rev. A 23, 2751 (1981).ADSGoogle Scholar
  16. 16.
    M. H. Phillips, L. W. Anderson, C. C. Lin, and R. E. Meirs, Phys. Lett. 82A, 404 (1981).ADSGoogle Scholar
  17. 17.
    R. E. Meirs, J. E. Gastineau, M. H. Phillips, L. W. Anderson, and C. C. Lin, Phys. Rev. A 25, 1185 (1982).ADSGoogle Scholar
  18. 18.
    J. O. Phelps, M. H. Phillips, L. W. Anderson, and C. C. Lin, J. Phys. B: At. Mol. Phys. 16, 3825 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    P. W. Zetner, W. B. Westerweld, G. C. King, and J. W. Mcconkey, J. Phys. B: At. Mol. Phys. 19, 4205 (1986).ADSCrossRefGoogle Scholar
  20. 20.
    V. E. Dobryshin, V. I. Rakhovskii, and V. M. Shustryakov, Opt. Spectrosc. 52, 364 (1982).ADSGoogle Scholar
  21. 21.
    C. W. Mclucas, W. R. Macgillivray, and M. C Standage, Phys. Rev. Lett. 48, 88 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    C. W. Mclucas, H. J. E. Wehr, W. R. Macgillivray, and M. C. Standage, J. Phys. B: At. Mol. Phys. 15, 1883 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    G. F. Hanne, V. Nickich, and M. Sohn, J. Phys. B: At. Mol. Phys. 18, 2037 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    F. A. Sharpton, R. M. St. John, C. C. Lin, and F. E. Fajan, Phys. Rev. A 2, 1305 (1970).ADSGoogle Scholar
  25. 25.
    W. C. Fon, K. A. Berrington, P. G. Burke, and A. E. Kingston, J. Phys. B: At. Mol. Phys. 14, 2921 (1981).ADSCrossRefGoogle Scholar
  26. 26.
    J. C. Mcconnell and B. L. Moiseiwitsch, J. Phys. B: At. Mol. Phys. 1, 406 (1968).ADSCrossRefGoogle Scholar
  27. 27.
    T. W. Ottley, D. R. Denne, and H. Kleinpoppen, J. Phys. B: At. Mol. Phys. 7, L179 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    I. C. Percival and M. J. Seaton, Phil. Trans. R. Soc. London, Ser. A 251, 113 (1958).ADSCrossRefGoogle Scholar
  29. 29.
    K. Bartschat, private communication (1983).Google Scholar
  30. 30.
    B. Stumpf and A. Gallagher, Phys. Rev. A 32, 3344 (1985).ADSGoogle Scholar
  31. 31.
    G. W. Foltz, E. J. Beiting, T. H. Meys, K. A. Smith, F. B. Dunning, and R. F. Stebbings, Phys. Rev. A 25, 187 (1982).ADSGoogle Scholar
  32. 32.
    I. V. Hertel and W. Stoll, J. Phys. B: At. Mol. Phys. 7, 583 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    H. W. Hermann, I. V. Hertel, W. Reiland, A. Stamatovic, and W. Stoll, J. Phys. B: At. Mol. Phys. 10, 251 (1977).ADSCrossRefGoogle Scholar
  34. 34.
    H. W. Hermann, I. V. Hertel, and M. H. Kelley, J. Phys. B: At. Mol. Phys. 13, 3465 (1980).ADSCrossRefGoogle Scholar
  35. 35.
    D. F. Register, S. Trajmar, S. W. Jensen, and R. T. Poe, Phys. Rev. Lett. 41, 749 (1978).ADSCrossRefGoogle Scholar
  36. 36.
    D. F. Register, S. Trajmar, G. Csanak, S. W. Jensen, M. A. Fineman, and R. T. Poe, Phys. Rev. A 28, 151 (1983).ADSGoogle Scholar
  37. 37.
    G. F. Hanne, Cz Szmytkowski, and M. van der Wiel, J. Phys. B: At. Mol. Phys. 15, L109 (1982).ADSCrossRefGoogle Scholar
  38. 38.
    J. J. Mcclelland, M. H. Kelley, and R. J. Celotta, Phys. Rev. Lett. 55, 688 (1985).ADSCrossRefGoogle Scholar
  39. 39.
    J. J. Mcclelland, M. H. Kelley, and R. J. Celotta, Phys. Rev. Lett. 56, 1362 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • W. R. MacGillivray
    • 1
  • M. C. Standage
    • 1
  1. 1.School of ScienceGriffith UniversityNathanAustralia

Personalised recommendations