Synthesis of Entangled Atomic States and Quantum Computation

  • T. Pellizzari
  • S. A. Gardiner
  • J. I. Cirac
  • P. Zoller
Conference paper


The preparation and coherent manipulation of N-atom entangled states is fundamental to realizing a quantum computer [1], is the basis of tests of quantum mechanics vs. local realists’ theories [2], and promises a novel atomic spectroscopy with resolution better than the standard quantum limit [3]. In a quantum computer (QC), information is stored in a quantum register composed of N two-level systems representing the quantum bits (qubits), and the general state of the QC is an (entangled) linear superposition of their states. QCs can perform certain classes of computations exponentially faster than any classical machine [1, 4]. Such a device should be able to perform arbitrary unitary operations on the quantum register, which can be decomposed into a sequence of steps involving the conditional dynamics of a few qubits (quantum gates) [1].


Cavity Mode Rabi Frequency Quantum Gate Gate Operation Cavity Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For an overview see, A. Ekert, Proc. 14th ICAP, ed. D. Wineland et al. (AIP Press, 1995 ) p. 450.Google Scholar
  2. 2.
    D. M. Greenberg, M. Home, and A. Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, ed. M. Kaftos, ( Dortrecht, Kluwer, 1989 ).Google Scholar
  3. 3.
    D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67 (1994);CrossRefGoogle Scholar
  4. D. J. Wineland, J. J. Bollinger, W. M. Itano, F. L. Moore, and D. J. Heinzen, Phys. Rev. A 46, R6797 (1992).CrossRefGoogle Scholar
  5. 4.
    P. Shor, Proc. 3511i Annual Symposium on Foundations of Computer Science, IEEE Press (1994).Google Scholar
  6. 5.
    A. Barenco, D. Deutsch, and A. Ekert, Phys. Rev. Lett. 74, 4083 (1995);CrossRefGoogle Scholar
  7. T. Sleator and H. Weinfurter, Phys. Rev. Lett. 74, 4087 (1995);MathSciNetCrossRefzbMATHGoogle Scholar
  8. D. P. DiVincenzo Phys. Rev. A 51, 1015 (1995); P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, unpublished.Google Scholar
  9. 6.
    J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 (1995).CrossRefGoogle Scholar
  10. 7.
    T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller, unpublished.Google Scholar
  11. 8.
    R. Landauer, Proc. Royal Soc. London, in press; W. G. Unruh, Phys. Rev. A 51, 992 (1995);Google Scholar
  12. I. Chuang, R. Laflamme, P. Shor, and W. Zurek, LANL report LA-UR-95–241;Google Scholar
  13. G. M. Palma, K.-A. Suominen, and A. Ekert, unpublished.Google Scholar
  14. 9.
    M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Phys. Rev. A 45, 6493 (1992);CrossRefGoogle Scholar
  15. H. Walther, Adv. in At. Mol. and Opt. Phys., 32, 379 (1994).Google Scholar
  16. 10.
    This is an N—atom generalization of the dark state described by A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Phys. Rev. Lett. 71, 3095 (1993); for recent experiments see also: J. Lawall et al., Opt. Phot. News, 5, 28 (1994).Google Scholar
  17. 11.
    A. Barchielli and V. P. Belavkin, J. Phys. A 24, 1495 (1991) and references cited.Google Scholar
  18. 12.
    R. Blatt, Proc. 14th ICAP, ed. D. Wineland et al. (A[P Press, 1995 ), p. 219.Google Scholar
  19. 13.
    W. Nagourney, J. Sandberg, H. Dehmelt, Phys. Rev. Lett. 56, 2797 (1986);CrossRefGoogle Scholar
  20. J. C. Bergquist, Randall G. Hulet, Wayne M. Itano, and D. J. Wineland, Phys. Rev. Lett. 57, 1699 (1986);CrossRefGoogle Scholar
  21. Th. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek. Phys. Rev. Lett. 57 1696 (1986).CrossRefGoogle Scholar
  22. 14.
    J.I. Cirac, R. Blatt, A. S. Parkins, and P. Zoller, Phys. Rev. Lett. 70, 762 (1993).CrossRefGoogle Scholar
  23. 15.
    F. Diedrich, J. C. Bergquist, Wayne M. [tano, and D. J. Wineland, Phys. Rev. Lett. 62, 403 (1989); here only the CM mode has to be cooled to the ground state.Google Scholar
  24. 16.
    R. J. Thompson, G. Rempe, and H. J. Kimble, Phys. Rev. Lett. 68, 1132 (1992);CrossRefGoogle Scholar
  25. H. Mabuchi and H. J. Kimble, Opt. Lett. 19, 749 (1994);CrossRefGoogle Scholar
  26. F. Treussart, J. Hare, L. Collot, V. Lefevre, D. S. Weiss, V. Sandoghdar, J. M. Raimund, and S. Haroche, Opt. Lett. 19, 1651 (1994);CrossRefGoogle Scholar
  27. S. E. Morin, C. C. Yu, and T. W. Mossberg, Phys. Rev. Lett. 73, 1489 (1994).CrossRefGoogle Scholar
  28. 17.
    D. Coppersmith, IBM Research Report RC19642 (1994).Google Scholar
  29. 18.
    D. Wineland, private communicationGoogle Scholar
  30. 19.
    R. Hughes, private communication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • T. Pellizzari
    • 1
  • S. A. Gardiner
    • 1
  • J. I. Cirac
    • 1
  • P. Zoller
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations