Quantum Theory of Fiber-Optics and Solitons

  • P. D. Drummond


The complete equations of motion for an electromagnetic field propagating in a dielectric fiber must include a quantum description of the radiation field, if gain, absorption, and the electronic nonlinear response of the medium are all taken into account. In addition, the effects of thermal vibrational states of the fiber cause fluctuations on both the macroscopic and molecular scales. This leads to an extra nonlinear response with a delay time of the order of 100 femtoseconds or longer, due to Brillouin and Raman processes. The resulting equation for the quantum field has the form of a vector nonlinear Schrödinger equation, with a modified nonlinear term to account for the delayed response. Additional quantum noise terms arising from the vibrational coupling are also present. Besides offering a quantum-mechanical formulation for the problem of soliton propagation in fibers1, the classical behavior of ultra-short pulses predicted by the theory supports earlier heuristic models of Raman scattering.


Photon Number Quantum Noise Polarization Field Nonlinear Schrodinger Equation Vibrational Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Hasegawa and F. Tappert, Appl. Phys. Lett. 23:192(1973); L. F. Mollenauer, R. H. Stolen and J. P. Gordon, Phys. Rev. Lett. 45:1095(1980); L. F. Mollenauer, Philos. Trans. Roy. Soc. Lond. A315: 435 (1985).Google Scholar
  2. 2.
    H. A. Bethe, Z. Phys. 71, 205 (1931); C. N. Yang, Phys. Rev. 168:1920(1967); S. Coleman, “Aspects of Symmetry”, Cambridge University Press, Cambridge(1985).Google Scholar
  3. 3.
    S. J. Carter, P. D. Drummond, M. D. Reid and R. M. Shelby, Phys. Rev. Lett., 58:1841(1987); P. D. Drummond and S. J. Carter, J. Opt. Soc. Am., B4: 1565 (1987).Google Scholar
  4. 4.
    M. Rosenbluh and R. M. Shelby, Phys. Rev. Lett. 66:153(1991); P. D. Drummond, R. M. Shelby, S. R. Friberg and Y. Yamamoto, Nature 365: 307 (1993).Google Scholar
  5. 5.
    C. M. Caves and P. D. Drummond, Rev. Mod. Phys. 66: 481 (1994).Google Scholar
  6. 6.
    J. P. Gordon and H. A. Haus, Opt, Lett. 11:665(1986); M. Nakazawa, E. Yamada, H. Kubota, and K. Suzuki, Electron. Lett. 27: 1270 (1991).Google Scholar
  7. 7.
    Y. Lai and H. A. Haus, Phys. Rev. A40:844 (1989); H. A. [laus and Y. Lai, J. Opt. Soc, Am., B7: 386 (1990).Google Scholar
  8. 8.
    M. Hillery and L. D. Mlodinow, Phys. Rev. A 30:1860(1984); P. D. Drummond, Phys. Rev. A 39: 2718 (1989).Google Scholar
  9. 9.
    J. P. Gordon, Optics Lett. 11:662(1986); S. J. Carter and P. D. Drummond, Phys. Rev. Lett. 67:3757(1991); P. D. Drummond and A. D. Hardman, Europhys. Lett. 21:279(1993); S. J. Carter, Phys. Rev. A 51: 3274 (1995).Google Scholar
  10. 10.
    Friberg, S. R., S. Machida and Y. Yamamoto, 1992, Phys. Rev. Lett. 69, 3165.Google Scholar
  11. 11.
    R. M. Shelby, P. D. Drummond and S. J. Carter, Phys. Rev. A42: 2966 (1990).Google Scholar
  12. 12.
    B. Huttner, J. J. Baumberg and S. M. Barnett, Europhys. Lett. 16: 177 (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • P. D. Drummond
    • 1
  1. 1.Physics DepartmentUniversity of QueenslandQueenslandAustralia

Personalised recommendations