Electromagnetically Induced Transparency

  • S. E. Harris
  • G. Y. Yin
  • A. Kasapi
  • M. Jain
  • Z. F. Luo


Electromagnetically induced transparency (EIT) is a technique for making an otherwise optically-thick medium transparent to laser radiation.’ The basic idea is to use two lasers or electromagnetic fields whose frequency difference is equal to a Raman (or two-photon) transition of the atom or molecule. We term these fields as the coupling field and the probe field. Figure 1 shows some of the possibilities. Transparency may be created in a (a) three-state system, or (b) in the continuum. Instead, (c) a medium which is already transparent, but is refractively thick (ßL » 1), may be made refractively thin (ßL « 1).


Group Delay Probe Pulse Rabi Frequency Electromagnetically Induce Transparency Coupling Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.-J. Boller, A. Imamoglu, and S. E. Harris, Phys. Rev. Lett. 66, 2593 (1991);CrossRefGoogle Scholar
  2. J. E. Field, K. H. Hahn, and S. E. Harris, Phys. Rev. Lett 67, 3062 (1991).CrossRefGoogle Scholar
  3. 2.
    K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).CrossRefGoogle Scholar
  4. 3.
    G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B 36, 5 (1976).CrossRefGoogle Scholar
  5. 4.
    S. P. Tewari and G. S. Agarwal, Phys. Rev. Lett. 56, 1811 (1986).CrossRefGoogle Scholar
  6. 5.
    O. Kocharovskaya and P. Mandel, Phys. Rev. A 42, 523 (1990).CrossRefGoogle Scholar
  7. 6.
    M. O. Scully, Phys. Rev. Lett. 67, 1855 (1991).CrossRefGoogle Scholar
  8. 7.
    S. E. Harris, Phys. Rev. Lett. 72, 52 (1994).CrossRefGoogle Scholar
  9. 8.
    J. H. Eberly, M. L. Pons, and H. R. Haq, Phys. Rev. Lett. 72, 56 (1994).CrossRefGoogle Scholar
  10. 9.
    R. Grobe, F. T. Hio, and J. H. Eberly, Phys. Rev. Lett. 73, 3183 (1994).CrossRefGoogle Scholar
  11. 10.
    M. Xiao, Y.-Q. Li, S.-Z. Jin, and J. Gea-Banacloche. Phys. Rev. Lett. 74, 666 (1995).CrossRefGoogle Scholar
  12. 11.
    R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, Phys. Rev. Lett. 74, 670 (1995).CrossRefGoogle Scholar
  13. 12.
    A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995).CrossRefGoogle Scholar
  14. 13.
    S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107 (1990).CrossRefGoogle Scholar
  15. 14.
    M. O. Scully, Quantum Opt. 6, 203 (1994).CrossRefGoogle Scholar
  16. 15.
    O. Kocharovskaya and P. Mandel, Quantum Opt. 6, 217 (1994).CrossRefGoogle Scholar
  17. 16.
    S. E. Harris and Zhen-Fei Luo, Phys. Rev. A (to be published).Google Scholar
  18. 17.
    S. E. Harris, Opt. Lett. 19, 2018 (1994).CrossRefGoogle Scholar
  19. 18.
    S. J. van Enk, Jian Zhang, and P. Lambropoulos, Phys. Rev. A 50, 2777 (1994).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. E. Harris
    • 1
  • G. Y. Yin
    • 1
  • A. Kasapi
    • 1
  • M. Jain
    • 1
  • Z. F. Luo
    • 1
  1. 1.Edward L. Ginzton LaboratoryStanford UniversityStanfordUSA

Personalised recommendations