Phase Diffusion in a Nonideal Laser

  • J. P. Woerdman
  • S. J. M. Kuppens
  • M. A. van Eijkelenborg
  • M. P. van Exter
  • C. A. Schrama
Conference paper


An expression for the quantum-limited linewidth Δv of an ideal laser was first given by Schawlow and Townes in 1958, 1
$$ \Delta v = \frac{{hv}}{{4\pi }}\frac{{\Gamma _c^2}}{{{P_{out}}}}, $$
where Γc = π Δ v c, is the linewidth of the passive cavity and Pout the output power of the laser. Since then it has been found by many authors that Eq. (1) must be generalized to describe the quantum-limited linewidth of a practical laser.


Phase Noise Quantum Noise Phase Diffusion Lower Laser Level Polarization Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.L. Schawlow and C.H. Townes, Infrared and optical masers, Phys. Rev. 112: 1940 (1958).CrossRefGoogle Scholar
  2. 2.
    M.P. van Exter, S.J.M. Kuppens and J.P. Woerdman, Theory for the linewidth of a bad-cavity laser, Phys. Rev. A51: 809 (1995).CrossRefGoogle Scholar
  3. 3.
    S.J.M. Kuppens, M.P. van Exter, M. van Duin and J.P. Woerdman, Evidence of nonuniform phase-diffusion in a bad-cavity laser, IEEE J. Quantum Electron. 31: 1237 (1995).CrossRefGoogle Scholar
  4. 4.
    H. Haken, Theory of intensity and phase fluctuations of a homogeneously broadened laser, Z. Physik 190: 327 (1966).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Lax, Quantum noise V: phase noise in a homogeneously broadened maser, in: “Physics of Quantum Electronics”, P.L. Kelly, B. Lax and P.E. Tannenwald, eds., McGraw Hill, New York (1966).Google Scholar
  6. 6.
    M.I. Kolobov, L. Davidovich, E. Giacobino and C. Fabre, Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources, Phys. Rev. A47: 1431 (1993).CrossRefGoogle Scholar
  7. 7.
    S.J.M. Kuppens, H. van Kampen, M.P. van Exter and J.P. Woerdman, Measurement of the spontaneous emission factor of a 3.39 µm HeNe laser, Opt. Commun. 107: 249 (1994).CrossRefGoogle Scholar
  8. 8.
    S.J.M. Kuppens, M.P. van Exter and J.P. Woerdman, Quantum-limited linewidth of a bad-cavity laser, Phys. Rev. Lett. 72: 3815 (1994).CrossRefGoogle Scholar
  9. 9.
    S.J.M. Kuppens, M.A. van Eijkelenborg, C.A. Schrama, M.P. van Exter and J.P. Woerdman, Incomplete inversion and anomalous fundamental linewidth of infrared HeNe and HeXe lasers, submitted to IEEE J. Quantum Electron. Google Scholar
  10. 10.
    M.A. van Eijkelenborg, C.A. Schrama and J.P. Woerdman, Quantum mechanical diffusion of the polarization of a laser, Opt. Commun. 119:97 (1995). Google Scholar
  11. 11.
    J.P. Woerdman, M.A. van Eijkelenborg, M.P. van Exter, S.J.M. Kuppens and C.A. Schrama, Quantum noise properties of small gas lasers, Quantum Semiclass. Optics 7: 589 (1995).Google Scholar
  12. 12.
    M.P. van Exter, W.A. Hamel and J.P. Woerdman, Nonuniform phase diffusion in a laser, Phys. Rev. A43:6241 (1991). Google Scholar
  13. 13.
    S.J.M. Kuppens, M.P. van Exter, J.P. Woerdman and M.I. Kolobov, Observation of the effect of spectrally inhomogeneous gain on the fundamental laser linewidth, submitted to Phys. Rev. Lett. Google Scholar
  14. 14.
    M. Lax, private communication.Google Scholar
  15. 15.
    A.Z. Khoury, M.I. Kolobov and L.A. Davidovich, Quantum-limited linewidth of a bad-cavity laser with inhomogeneous broadening, to be published.Google Scholar
  16. 16.
    R. Graham, Order parameter fluctuations of a laser with polarization symmetry Phys. Lett. 103A:255 (1984). Google Scholar
  17. 17.
    S. Grossmann and W. Krauth, Laser with large photon correlation times, Phys. Rev. A35: 2523 (1987).CrossRefGoogle Scholar
  18. 18.
    W. Krauth and S. Grossmann, Linewidths of lasers with broken polarization symmetry Phys. Rev. A35:4192 (1987). Google Scholar
  19. 19.
    C.A. Schrama, M.A. van Eijkelenborg and J.P. Woerdman, Diffusion of the difference phase and amplitude in an isotropic laser, to be submitted.Google Scholar
  20. 20.
    N.B. Abraham, E. Arimondo and M. San Miguel, Polarization state selection and stability in a laser with a polarization-isotropic resonator; an example of no lasing despite inversion above threshold, Opt. Commun. 117: 344 (1995).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • J. P. Woerdman
    • 1
  • S. J. M. Kuppens
    • 1
  • M. A. van Eijkelenborg
    • 1
  • M. P. van Exter
    • 1
  • C. A. Schrama
    • 1
  1. 1.Huygens LaboratoryLeiden UniversityLeidenThe Netherlands

Personalised recommendations