Monte Carlo Wavefunctions

  • Klaus Mølmer
  • Yvan Castin


An atom decaying by spontaneous emission, or a field mode which is damped due to absorption or leakage of photons through mirrors, are examples of “open systems” in quantum optics. Such systems must be described by quantities which are more general than a wavefunction, and their dynamics is different from the usual solutions of Schrödinger’s equation. The standard treatment involves the introduction of a system density matrix ρ,and under conditions often fulfilled in quantum optics problems, the Schrödinger equation of motion for the total system+ surroundings wavefunction leads to a linear equation of motion, the so-called master equation, for ρ(t). Recently, a novel treatment of such systems was introduced: provided a stochastic element is included in the evolution, it is possible to apply wavefunctions rather than density matrices. We shall give a brief outline of how these stochastic wavefunctions are introduced and point out some of their main advantages. As an example we shall discuss the application to full quantum calculations on laser cooling. Experiments on laser cooling are now approaching a regime where collective atomic effects become prominent, and as a natural extension we shall comment on the application of wavefunctions to non-linear master equations.


Density Matrix Master Equation Laser Cool Density Matrix Element Quantum Jump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Dalibard, Y. Castin and K. Molmer, Phys. Rev. Lett. 68, 580 (1992).CrossRefGoogle Scholar
  2. 2.
    C. Cohen-Tannoudji, B. Zambon and E. Arimondo, J.Opt.Soc.Am. B 10 2107 (1993).CrossRefGoogle Scholar
  3. 3.
    F. Bardou, J.P. Bouchaud, O. Emile, A. Aspect and C. Cohen-Tannoudji, Phys. Rev. Lett. 72 203 (1994).CrossRefGoogle Scholar
  4. 4.
    G. Lindblad, Commun.Math.Phys. 48, 119 (1976).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    K. Molmer, Y. Castin and J. Dalibard, J.Opt.Soc.Am B 10, 524 (1993).CrossRefGoogle Scholar
  6. 6.
    H.J. Carmichael, An Open Systems Approach to Quantum Optics, LNIP m18, Springer 1993.Google Scholar
  7. 7.
    R. Dum, P. Zoller and H. Ritsch, Phys. Rev. A45, 4879 (1992).CrossRefGoogle Scholar
  8. 8.
    G.C. Hegerfeldt and T.S. Wilser, in II Int. Wigner Symp., July 1991, World Scientific 1992.Google Scholar
  9. 9.
    N. Gisin and I. Percival, J.Phys.A. 25,5677 (1992); Phys.Lett. A175, 144 (1993).Google Scholar
  10. 10.
    M. Lax, Phys. Rev. 172, 350 (1968).CrossRefGoogle Scholar
  11. 11.
    P. Marte, R. Dum, R. Taieb, P. D. Lett, and P. Zoller, Phys. Rev. Lett. 71, 1335 (1993).CrossRefGoogle Scholar
  12. 12.
    C. W. Gardiner, A. S. Parkins, and P. Zoller, Phys. Rev. A46, 4636 (1992), R. Dum, A. S. Parkins, P. Zoller and C. W. Gardiner, ibid 46, 4382 (1992).MathSciNetGoogle Scholar
  13. 13.
    C. Gardiner, Phys. Rev. Lett. 70, 2269 (1993); C. W. Gardiner and A. S. Parkins, Phys. Rev. A50, 1782 (1994).Google Scholar
  14. 14.
    H. J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993); P Kochan and H. J. Carmichael, Phys. Rev. A50, 1700 (1994).CrossRefGoogle Scholar
  15. 15.
    A. Imamoglu, Phys. Rev. A50, 3650 (1994).CrossRefGoogle Scholar
  16. 16.
    Y. Castin, J. Dalibard and K. Molmer, Atomic Physics XIII (1992) 143. AIP (1993).Google Scholar
  17. 17.
    Y. Castin, and K. Molmer, Phys.Rev.Lett. 74 3772 (1995).CrossRefGoogle Scholar
  18. 18.
    Y. Castin, K. Berg-Sorensen, K. Molmer, and J. Dalibard, in Fundamentals of Quantum Optics III, Springer (1993).Google Scholar
  19. 19.
    G. Lentz, P. Meystre, and E. M. Wright, Phys. Rev. Lett. 71, 3271 (1993); Phys. Rev. A50, 1681 (1994).Google Scholar
  20. 20.
    W. Zhang, Phys. Lett. A176, 226 (1993); W. Zhang, D. F. Walls, and B. C. Sanders, Phys. Rev. Lett. 72, 60 (1994).CrossRefGoogle Scholar
  21. 21.
    Y. Castin and K. Molmer, Phys. Rev. A51, R3426 (1995).CrossRefGoogle Scholar
  22. 22.
    L. Allen and J. Eberly Optical Resonance and Two-Level Atoms, Dover 1987.Google Scholar
  23. 23.
    K. Molmer and Y. Castin, Monte Carlo wavefunctions and non-linear master equations,to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Klaus Mølmer
    • 1
  • Yvan Castin
    • 2
  1. 1.lnstitute of Physics and AstronomyAarhus UniversityÅrhus CDenmark
  2. 2.Laboratoire Kastler Brossel de l’Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations