Numerical Analyses for Coherent Mode Representation

  • Dae-Yoon Park
  • Kisik Kim
Conference paper


Under general conditions, the cross spectral density of any finite stationary source attains the coherent mode representation1
$$ W({r_1},{r_2};\omega ) = \sum\limits_n {{\lambda _n}(\omega )} \phi _n^*({r_1};\omega ){\phi _n}({r_2};\omega ). $$


Integral Equation Large Eigenvalue Large Source Source Domain Coherence Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Wolf, J. Opt. Soc. Am. 73, 343 (1982).CrossRefGoogle Scholar
  2. 2.
    K. Kim and D. Park, Opt. Lett. 17, (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Dae-Yoon Park
    • 1
  • Kisik Kim
    • 1
  1. 1.Department of PhysicsInha UniversityInchonKorea

Personalised recommendations