Photon Scattering from Atoms in an Atom Interferometer: Coherence Lost and Regained

  • David E. Pritchard
  • Michael S. Chapman
  • Troy D. Hammond
  • Alan Lenef
  • Richard A. Rubenstein
  • Jörg Schmiedmayer
  • Edward T. Smith
Conference paper


Loss of coherence in one system A that results from entanglement or correlation with a reservoir M has long been an important issue in quantum mechanics. It is of special interest both because of the difficulty of incorporating the resulting coherence loss into Schrödinger’s equation describing system A and because of its relevance to understanding the measurement process in particular and the connection between quantum mechanics and classical mechanics in general [1]. We discuss experiments here in which this entanglement results from the elastic scattering of a photon from an atom initially in a state with extended spatial coherence inside an atom interferometer. The major issues addressed are the degree of loss of coherence (ie. contrast of the interference fringes), both when the outgoing photon is ignored (ie. treated as a reservoir) and when information about its final state is inferred from the final momentum of the atom. This inference is exact since momentum (and energy too) is conserved and the initial momentum of both photon and atom are well specified.


Interference Fringe Atomic Beam Photon Scattering Fringe Visibility Atom Interferometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.A. Wheeler and W.H. Zurek. Quantum Theory and Measurement ( Princeton University Press, Princeton, 1983 ).Google Scholar
  2. 2.
    N. Bohr in A. Einstein: Philosopher - Scientist edited by P. A. Schilpp p. 200–241 (Library of Living Philosophers, Evaston, 1949); a detailed analysis is given in: W. Wooters and W. Zurek, Phys. Rev. D 19 473 (1979).Google Scholar
  3. 3.
    R. Feynman, R. Leighton and M. Sands. The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1965)vol. 3, p. 5–7Google Scholar
  4. 4.
    A. Zeilinger. in New Techniques an Ideas in Quantum Mechanics, p. 164, edited by ( New York Acad. Science, New York, 1986 ).Google Scholar
  5. 5.
    T. Sleator, O. Carnal, T. Pfau, A. Faulstich, H. Takuma and J. Mlynek. in Laser Spectroscopy X, p. 264, edited by M. Dulcoy, E. Giacobino and G. Camy ( World Scientific, Singapore, 1991 ).Google Scholar
  6. 6.
    S.M. Tan and D.F. Walls, Phys. Rev. A 47, 4663 (1993)CrossRefGoogle Scholar
  7. 7.
    F. Riehle, A. Witte, T. Kisters and J. Helmcke, Appl. Phys. B 54, 333 (1992).CrossRefGoogle Scholar
  8. U. Sterr, K. Sengstock, J.H. Muller, D. Bettermann and W. Ertmer, Appl. Phys. B 54, 341 (1992).CrossRefGoogle Scholar
  9. J.F. Clauser and S. Li, Phys. Rev. A 50, 2430 (1994).CrossRefGoogle Scholar
  10. M.S. Chapman, C.R. Ekstrom, T.D. Hammond, R.A. Rubenstein, J. Schmiedmayer, S. Wehinger and D.E. Pritchard, in press.Google Scholar
  11. 8.
    D.W. Keith, C.R. Ekstrom, Q.A. Turchette and D.E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991).CrossRefGoogle Scholar
  12. J. Schmiedmayer, M.S. Chapman, C.R. Ekstrom, T.D. Hammond, S. Wehinger and D.E. Pritchard, Phys. Rev. Lett. 74, 1043 (1995).CrossRefGoogle Scholar
  13. 9.
    C. Bordé, Phys. Lett. A 140, 10 (1989)Google Scholar
  14. 10.
    P. Storey and C. Cohen-Tannoudji, J. Phys. II France 4, 1999 (1994)Google Scholar
  15. 11.
    A. Stern, Y. Aharonov and Y. Imry, Phys. Rev. A 41, 3436 (1990)CrossRefGoogle Scholar
  16. 12.
    L. Mandel, J. Optics (Paris) 10, 51 (1979)CrossRefGoogle Scholar
  17. 13.
    T. Pfau, S. Spalter, C. Kurstsiefer, C.R. Ekstrom and J. Mlynek, Phys. Rev. Lett. 29, 1223 (1994)CrossRefGoogle Scholar
  18. 14.
    P.L. Gould, P.J. Martin, G.A. Ruff, R.E. Stoner, J.L. Picque and D.E. Pritchard, Phys. Rev. A 43, 585 (1991)CrossRefGoogle Scholar
  19. 15.
    B.G. Oldaker, P.J. Martin, P.L. Gould, M. Xiao and D.E. Pritchard, Phys. Rev. Lett 65, 1555 (1990)CrossRefGoogle Scholar
  20. 16.
    Because of the narrow acceptance of the detector for this correlation experiment, C(laser on) # C(laser oft) even when d = 0.Google Scholar
  21. 17.
    N.F. Ramsey. Molecular Beams (Oxford University Press, Oxford, 1985 )Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • David E. Pritchard
    • 1
  • Michael S. Chapman
    • 1
  • Troy D. Hammond
    • 1
  • Alan Lenef
    • 1
  • Richard A. Rubenstein
    • 1
  • Jörg Schmiedmayer
    • 1
    • 2
  • Edward T. Smith
    • 1
  1. 1.Department of Physics and Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institut für ExperimentalphysikUniversität InnsbruckInnsbruckAustria

Personalised recommendations