Experiments with Correlated Atom-Photon States

  • T. Pfau
  • Ch. Kurtsiefer
  • C. R. Ekstrom
  • J. Mlynek
Conference paper


The nonclassical entangled states of two or more particles gave rise to a whole new class of fundamental experiments and applications based on the nonlocality of quantum mechanics. Recent examples can be found in the fields of quantum computing and quantum cryptography1.


Entangle State Interference Pattern Light Field Coherence Function Double Slit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Deutsch, hroc. I2. Soc. London. A 400 (1985) 97; A.K. Ekert, Phys. Reo. Lett. 67 (1991) 661.CrossRefGoogle Scholar
  2. 2.
    J.S. 13x11, Ph.y?i,:s t (1964) 195 A Aspect, 1. Dalibard, and G. Roger, Phys. Rey, Lett. 49 (1982) 1804.Google Scholar
  3. 3.
    Z.T. On and L. Mandel Phys. Reis. Lett. 61 (1990) 50;.1.G. Rarity and P.R. Trcpster Phys. lies. Lett. 64 (1990) 2495.Google Scholar
  4. 4.
    D. M. Greenberger, M.A. Horne, A. Shitucuty, A. Zeilinger, Ant..l. Phys. 58 (1990) 1131.Google Scholar
  5. 5.
    E.R. Popper. (»uaartvtn. Thcur~q an.rl the Sc.hdsrn. iin. Ph.ysicn•, Vol. III of I,[.script. to the Lngv. Sricn.t.ijic Di.:covvey, AV.W. Bartley cri. ( Hutchinson, London, 1983 ).Google Scholar
  6. 6.
    AV.Hciseuhrrg, Z. f. Physik 43, 172 (1927).CrossRefGoogle Scholar
  7. 7.
    T. Pfau, S. Spiilter, Ch. Kurtsiefcr, C.R. Ekstrom, and J. Mlynek, Phys. Rev. Lett. 73, 1223 (1994). Ch. Rnrtsiefcr, T. Pfau, C.B. Ekstrom. and J. Mlynek. Armais of the New York: Acn.derny of Science 755, 162 (1995).CrossRefGoogle Scholar
  8. 8.
    Born. Wolf. Principles of Optics Gui Erl., Pergauion press (1980).Google Scholar
  9. 9.
    Al. Fraucon. S. Mallick.. Progress in Optics, 6, 71 (1967).CrossRefGoogle Scholar
  10. 10.
    T. Shamor et al, in: Proc. of the Tenth Int. Conf. on Laser Spectroscopy.. 264 (1992).Google Scholar
  11. 11.
    S. Tan. D. AV’ails, Phys. Rey. A 47, 4663 (1993).CrossRefGoogle Scholar
  12. 12.
    L. Daliltarrl. C. Cohen-Taunondji,.IOSA B 2, 1707 (1985).Google Scholar
  13. 13.
    NI. Chapman private communication.Google Scholar
  14. 14.
    NI.O. Scully. B.-G. Englert, H. Walther, Rature 351, 111 (1991).Google Scholar
  15. 15.
    This efficiency is essentially given by the optical excitation efficiency, which for muet astable Helmut can be almost 100% (sec C.R. Ekstrom, Ch. lÇurtsiefer, D. Voigt, O. Dross, T. Pfau, and.1. A4lyuek; submit fol to Opt. Comm.):mud the cnll,’ctiou efficiency,cheep ran Le of the order of 10% if the appropriate optie is chosen.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • T. Pfau
    • 1
  • Ch. Kurtsiefer
    • 1
  • C. R. Ekstrom
    • 1
  • J. Mlynek
    • 1
  1. 1.Fakultät für PhysikUniversität KonstanzKonstanzDeutschland

Personalised recommendations