On the Phase Properties of Binomial and Negative Binomial States

  • Ts. Gantsog
  • Amitabh Joshi
  • R. Tanaś
Conference paper


The binomial and negative binomial states are well studied in recent years 1–4.


Coherent State Phase Variance Photon Number Phase Property Rabi Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. Stoler, 13. E. A. Saleh and M. C. Teich, Binomial states of the quantized radiation field, Opt. Acta 32:: 45 (1985).Google Scholar
  2. 2.
    A. Joshi and R. R. Puri. Effects of binomial field distribution on collapse and revival phenomenon in the Jaynes-Cummings model, J. !Mod. Opt. 34: 1121 (1987).MathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Joshi and S. V. Lawande, ‘Elie effects of negative binomial field distribution on Rabi oscillations in a two-level atome. Opt. Conon. 70: 21 (1989).CrossRefGoogle Scholar
  4. 4.
    G. Agarwal, Negative binomial states of the field operator representation and production by state reduction in optical processes, Phys. R(v. 4 45: 1787 (1992).Google Scholar
  5. 5.
    ). T. Pegg and S. M. Barnett, Phase properties of the quantized single-mode electromagnetic field, Phy.s. Rcv. _1 39: 1665 (1989).Google Scholar
  6. 6.
    Ts. Gautsog, A. Josue and R. Tanas. Phase properties of binomial and negative binomial states. Quantum. Optics (i: 517 (1994)Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ts. Gantsog
    • 1
  • Amitabh Joshi
    • 2
  • R. Tanaś
    • 3
  1. 1.Max-Planck-Institut für QuantenoptikGarchingGermany
  2. 2.Department of MathematicsUMISTManchesterUK
  3. 3.Nonlinear Optics Division, Institute of PhysicsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations