The Manifestation of Classical Trajectories in Rydberg Atoms

  • Jeroen Wals
  • Ben van Linden van den Heuvell
Conference paper


Semi-classical approximations of quantum mechanics have the advantage of being more intuitive than the probability description of quantum mechanics, since a complicated system described in terms of classical trajectories is easier to visualize. Furthermore, there is great interest in the correspondence between classical mechanics and quantum mechanics in the case the classical system exhibits chaotic behaviour. The popularity of chaos theory increased the interest in simple atomic systems displaying chaotic behaviour. A simple system showing chaotic behaviour was found in the hydrogen atom in a strong external magnetic field. The diamagnetic Hamiltonian is non-separable and therefore the classical system is chaotic, and the question is how this chaos manifests itself in the quantum system. The last few years, this system has been studied extensively, both theoretically and experimentally,1 together with atoms in electric2 and combined electric and magnetic fields.3


Wave Packet Chaotic Behaviour Classical Trajectory Rydberg Atom Rydberg Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    For a review on diamagnetic hydrogen see: H. Friedrich and D. Wintgen, Phys. Rep. 183, 37 (1989).MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Gao and J. B. Delos, Phys. Rev. A 49, 869 (1994) and references therein.Google Scholar
  3. 3.
    M. A. [ken, F. Borondo, R. M. Benito and T. Uzer, Phys. Rev. A 49, 2734 (1994) and references therein.Google Scholar
  4. 4.
    J. Wals, H. H. Fielding, J. F. Christian, L. C. Snoek, W. J van der Zande and H. B. van Linden van den Heuvell, Phys. Rev. Leu. 72, 3783 (1994).CrossRefGoogle Scholar
  5. 5.
    For a review on Rydberg wave packets see: G. Alber and P. Zoller, Phys. Rep. 199, 231 (1990).Google Scholar
  6. 6.
    B. Broers, J. F. Christian, J. H. Hoogenraad, W. J. van der Zande, H. B. van Linden van den Heuvell and L. D. Noordam, Phys. Rev. Lett. 71, 344 (1993).CrossRefGoogle Scholar
  7. 7.
    H. H. Fielding, J. Wals, W. J. van der Zande and H. B. van Linden van den Heuvell, Phys. Rev. A 51, 611 (1995).CrossRefGoogle Scholar
  8. 8.
    M. Coumey, H. Jiao, N. Spellmeyer, D. Kleppner, J. Gao and J. B. Delos, Phys. Rev. Lett. 74, 1538 (1995).CrossRefGoogle Scholar
  9. 9.
    J. Wals and H. B. van Linden van den Heuvell, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jeroen Wals
    • 1
  • Ben van Linden van den Heuvell
    • 1
    • 2
  1. 1.Van der Waals-Zeeman InstituteUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.FOM-Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations