Assessment of Cognitive Function: Exploration of Memory Processing to Topographical Mapping Techniques

  • J. F. DeFrance
  • C. Hymel
  • J. Degioanni
  • D. S. Calkin
  • S. Estes
  • F. C. Schweitzer
  • R. Hymel
Part of the Perspectives on Individual Differences book series (PIDF)


Human memory function has been the subject of intensive study. Nevertheless, little is known as to how the brain integrates its operations during the learning process so that an individual memory can “stamp its image” during recollection or recall. Electrophysiological approaches hold great promise in helping to unlock some of the mysteries of memory processing. While behavioral, lesion (e.g., clinical case studies), and laboratory studies such as magnetic resonance imaging (MRI), computerized tomography (CT), and positron emission tomography (PET) can be very helpful, only physiological studies can directly measure changes in brain activity in real time, that is associated with the various operational stages of mnemonic function. The focus here was on what we think to be one of the more interesting aspects of human memory—the “proactive interference” effect.


Proactive Interference Electrode Site Acquisition Phase Acquisition Trial Retrieval Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Battig, F., & Montague, W. E. (1969). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut category norms. Journal of Experimental Psychology, 80, 1–46.CrossRefGoogle Scholar
  2. Beatty, W. W., & Butters, N. (1986). Further analysis of encoding in patients with Huntington’s disease. Brain and Cognition, 5, 387–398.PubMedCrossRefGoogle Scholar
  3. Buchsbaum, M. S., Rigal, F., Coppola, R., Cappelletti, J., King, C., & Johnson, J. (1982). A new system for gray-level surface distribution maps of electrical activity. Electroencephalography and Clinical Neurophysiology, 53, 237–242.PubMedCrossRefGoogle Scholar
  4. Corby, J. C., & Kopell, B. S. (1972). Differential contributions of blink and vertical eye movements as artifacts in EEG recordings. Psychophysiology, 9, 640–644.PubMedCrossRefGoogle Scholar
  5. Craik, F., & Birstwistle, J. (1971). Proactive inhibition in free recall. Journal of Experimental Psychology, 91, 120–123.CrossRefGoogle Scholar
  6. Cremak, L. S., & Butters, N. (1972). The role of interference and encoding in the shortterm memory deficits of Korsakoff patients. Neuropsychologia, 10, 89–95.CrossRefGoogle Scholar
  7. Cremak, L. S., Butters, N. S., & Moreines, J. (1974). Some analyses of the verbal encoding deficit of alcoholic Korsakoff patients. Brain and Language, 1, 41–150.Google Scholar
  8. Donchin, E., Ritter, W., & McCallum, W. C. (1978). Cognitive psychophysiology. In E. S. Callaway, P. ‘Dieting, and S. H. Koslow (Eds.), Event-related brain potentials in man (pp. 349–441 ). New York: Academic Press.Google Scholar
  9. Freedman, M., & Cermak, L. S. (1986). Semantic encoding deficits in frontal lobe disease and amnesia. Brain and Cognition, 5, 108–114.PubMedCrossRefGoogle Scholar
  10. Gardiner, J. M., Craik, F. I., & Birtwistle, J. (1972). Retrieval cues and release from proactive inhibition. Journal of Verbal Learning and Verbal Behavior, 11, 778–783.CrossRefGoogle Scholar
  11. Halgren, E., & Smith, M. E. (1987). Cognitive evoked potentials as modulatory processes in human memory formation and retrieval. Human Neurobiology, 6, 129–139.PubMedGoogle Scholar
  12. Halgren, E., Squires, N. K., Wilson, C. L., Rohrbaugh, J. W., Babb, T. L., & Crandall, P. H. (1980). Endogenous potentials generated in the human hippocampal formation and amygdala by infrequent events. Science, 210, 803.PubMedCrossRefGoogle Scholar
  13. Hillyard, S. A. (1985). Electrophysiology of human selective attention. Trends In Neuroscience, 8, 400–405.CrossRefGoogle Scholar
  14. Hillyard, S. A., & Galambos, R. (1970). Eye movement artifacts in the CNV. Electroencephalography and Clinical Neurophysiology, 28, 173–182.PubMedCrossRefGoogle Scholar
  15. Hillyard, S. A., & Kutas, M. (1983). Electrophysiology of cognitive processing. Annual Review of Psychology, 34, 33–61.PubMedCrossRefGoogle Scholar
  16. Jacoby, L. L. (1983). Perceptual enhancement: persistent effects of an experience. Journal of Experimental Psychology, 9, 21–38.PubMedGoogle Scholar
  17. Jasper, H. H. (1958). Report to the committee on methods of clinical examination in electroencephalography. Appendix: The ten-twenty system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.Google Scholar
  18. Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic associations. Nature (London), 307, 161–163.CrossRefGoogle Scholar
  19. Picton, T. W., & Stuss, D. T. (1980). The component structure of the human event-related potentials. In H. H. Kornhuber and L. Deecke (Eds.), Motivation, Motor and Sensory Processes of the Brain: Electrical Potentials, Behavior and Clinical Use. Progress in Brain Research (pp. 17–49 ). New York: Elsevier.Google Scholar
  20. Polich, J. (1985). Semantic Categorization and Event-Related Potentials. Brain and Language, 26, 304–321.PubMedCrossRefGoogle Scholar
  21. Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. A. (1986). Solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695–703.PubMedCrossRefGoogle Scholar
  22. Smith, M. E., Stapleton, J. M., & Halgren, E. (1986). Human medial temporal lobe potentials evoked in memory and language tasks. Electroencephalography and Clinical Neurophysiology, 63, 145–163.PubMedCrossRefGoogle Scholar
  23. Smith, M. E., Stapleton, J. M., Moreno, K. A., & Halgren, E. (1985). The effects of anterior temporal lobectomy on endogenous EPs recorded during verbal recognition memory testing. Society For Neuroscience, Abstracts, 11, 527.Google Scholar
  24. Squire, L. R. (1982). Comparison between forms of amnesics: Some deficits are unique to Korsakoffs syndrome. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8, 560–571.Google Scholar
  25. Stuss, D. T., Kaplan, E. F., Benson, D. F., Weir, W. S., Chiulli, S., & Srarzin, F. F. (1982). Evidence for the involvement of orbitofrontal cortex in memory functions: An interference effect. Journal of Comparative Physiological Psychology, 96, 913–925.CrossRefGoogle Scholar
  26. Sutton, S., Braren, M., Zubin, J., & John, E. R. (1965). Evoked potential correlates of stimulus uncertainty. Science, 150, 1187–1188.PubMedCrossRefGoogle Scholar
  27. Thomson, D. M., & Tulving, E. (1970). Associatative encoding and retrieval: Weak and strong cues. Journal of Experimental Psychology, 86, 255–262.CrossRefGoogle Scholar
  28. Underwood, B. J. (1957). Interference and forgetting. Psychological Review, 64, 49–60.PubMedCrossRefGoogle Scholar
  29. Verleger, R., Gasser, T., & Möcks, J. (1982). Correction of EOG artifacts in event-related potentials of the EEG: Aspects of reliability and validity. Psychophysiology, 19, 472–480.PubMedCrossRefGoogle Scholar
  30. Wickens, D. D. (1970). Encoding categories of words: An empirical approach to meaning. Psychological Review, 77, 1–15.CrossRefGoogle Scholar
  31. Wickens, D. D. (1973). Some characteristics of word encoding. Memory and Cognition, 1, 485–490.CrossRefGoogle Scholar
  32. Wickens, D. D., Born, D. G., & Allen, C. K. (1963). Proactive inhibition and item similarity in short-term memory. Journal of Verbal Learning and Verbal Behavior, 2, 362–368.CrossRefGoogle Scholar
  33. Wilson, R. S., Como, P. G., Garron, D. C., Klawans, H. L., Barr, A., & Klawan, D. (1987). Memory failure on Huntington’s disease. Journal of Clinical and Experimental Psychology, 9, 147–154.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. F. DeFrance
    • 1
    • 2
  • C. Hymel
    • 3
  • J. Degioanni
    • 4
  • D. S. Calkin
    • 5
  • S. Estes
    • 2
  • F. C. Schweitzer
    • 2
  • R. Hymel
    • 2
  1. 1.University of Texas Medical SchoolHoustonUSA
  2. 2.HCA Gulf Pines HospitalHoustonUSA
  3. 3.Graduate School of Biomedical SciencesUniversity of Texas at HoustonHoustonUSA
  4. 4.Johnson Space CenterNational Aeronautics and Space AdministrationHoustonUSA
  5. 5.Krug Life SciencesHoustonUSA

Personalised recommendations