Larval Adhesion, Releasing Stimuli and Metamorphosis

  • W. A. Müller
  • F. Wieker
  • R. Eiben

Abstract

Free living stages of sedentary organisms can be considered adaptations to enable immobile species to exploit a scattered or transient ecological niche. The task to prospect for and to identify a congenial habitat is consigned, as a rule, to larvae or larva-like buds, that is to those stages which actually transform into the sessile phase. This is the case even if a metagenetic life cycle has provided the species with a dominant swimming phase capable of brooding the eggs throughout development until the settling stage. Eventually, the larvae are set free and they have to find a suitable substratum themselves. But how can larvae comply with such a task? Their sensory equipment is very limited and does not qualify them to locate an appropriate habitat from a distance. This applies especially to coelenterate larvae. They depend, therefore, on a hierarchy of key or sign stimuli indicative for their adult environment. Viewed in terms of behaviour, the larva displays appetitive or searching activity which continues until the larva is presented with a specific releasing stimulus triggering fixation and metamorphosis. The effective stimulus must be derived from characteristic substrate properties which can be explored by mechanoreceptors and/or a chemical contact sense (Crisp, 1974). Recognition of an adequate substratum, therefore, depends on physical contact or, at least, on a close range approach. The word ‘close’ can be defined in this context in relation to the various forces of adhesion.

Keywords

Contact Angle Hermit Crab Sign Stimulus Gastropod Shell Anterior Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crisp, D.J. 1974. Factors influencing settlement of marine invertebrate larvae. In: Chemoreception in marine organisms (ed. by P.T. Grant and A.M. Mackie), Academic Press, London, New York.Google Scholar
  2. Baier, R.E. 1970. Surface properties influencing biological adhesion. In: Adhesion in biological systems (ed. by R.S. Manly), Academic Press, New York, London.Google Scholar
  3. Eiben, R. in press. Einfluß von Benetzungsspannung und Ionen auf die Substratbesiedlung und das Einsetzen der Metamorphose bei Bryozoenlarven (Bowerbankia gracilis). Marine Biology, in press.Google Scholar
  4. May, G. and W.A. Müller 1975. Aktivitäten von Enzymen des Kohlenhydrat-Stoffwechsels und der Na+-K+-ATPase im Zuge der Embryonalentwicklung und Metamorphose von Hydractinia echinata (Hydrozoa). Wilhelm Roux’ Archiv 177: 235–254.CrossRefGoogle Scholar
  5. Müller, W.A. 1973. Metamorphose-Induktion bei Planulalarven. I. Der bakterielle Induktor. Wilhelm Roux’ Archiv 173: 107–121.CrossRefGoogle Scholar
  6. Müller, W.A. and G. Buchal 1973. Metamorphose-Induktion bei Planulalarven. II. Induktion durch monovalente Kationen. Wilhelm Roux’ Archiv 173: 122–135.CrossRefGoogle Scholar
  7. Müller, W.A., A. Mitze, J.P. Wickhorst, H.M. Meier-Menge, in press. Polar morphogenesis in early hydroid development: Action of cesium, neurotransmitters and of a head-activating morphogen on pattern formation. Wilhelm Roux’ Archiv.Google Scholar
  8. Weiss, L. 1970. A biophysical consideration of cell contact phenomena. In: Adhesion in biological systems (ed. by R.S. Manly), Academic Press, New York, London.Google Scholar
  9. Wieker, F. 1975. Bildung und Metamorphose der Schwimmknospen von Cassiopea xamachana. Diplomarbeit, Naturwissenschaftliche Fakultät, Technische Universität, Braunschweig.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • W. A. Müller
    • 1
  • F. Wieker
    • 1
  • R. Eiben
    • 1
  1. 1.Zoological InstituteTechnical UniversityBraunschweigGermany

Personalised recommendations