Coelenterate Ecology and Behavior pp 5-21 | Cite as
The Nature of Flow and the Reaction of Benthic Cnidaria to It
Abstract
Fluid flow is an environmental factor acting upon organisms in its path. All organisms live in a fluid, liquid or gas. A fluid moving relative to a body imposes mechanical forces on that body. These forces, which tend to carry the body downstream, are known as drag forces. Organisms depending on moving fluid to transport them from place to place have various morphological features that maximize drag, whereas organisms that locomote through a fluid tend to have structures that minimize drag. Sessile organisms such as benthic cnidarians risk being dislodged or broken by drag forces, yet they depend on the fluid moving over them to bring them food and essential substances, to carry away their wastes, and to disperse their gametes or young. Various compromises between maximizing and minimizing the effects of flow can be recognized among the benthic cnidarians.
Keywords
Drag Force Skin Friction Flexural Stiffness Flow Force Sessile OrganismPreview
Unable to display preview. Download preview PDF.
Literature Cited
- Abbott, B.M., 1974. Flume studies on the stability of model corals as an aid to quantitative palaeoecology. Palaeogeogr. Paleoclimatol. Palaeoecol., 15:1–27.CrossRefGoogle Scholar
- Barham, E.G., and I.E. Davies, 1968. Gorgonians and water motion studies in Gulf of California. Underwater Naturalist, Bull. Am. Littoral Soc., Winter: 24–28, 42.Google Scholar
- Alexander, R.M., 1968. Animal Mechanics. Univ. Washington Press, Seattle. 346 pp.Google Scholar
- Chamberlain, I.A., and R. R. Graus, 1975a. Water flow and hydromechanical adaptations of branched reef corals. Bull. Mar. Sci., 25:112–125.Google Scholar
- Chamberlain, I.A., and R. R. Graus, 1975b. Adaptations in corals: How do corals withstand waves and currents? Abstracts with Programs, U.S. Geol. Soc. Ann. Meetings, Salt Lake City, Utah, 1024.Google Scholar
- Chapman, G., 1975. Versatility of hydraulic systems. J. Exp. Zool., 194: 249–270.CrossRefGoogle Scholar
- Gosline, J.M., 1971. Connective tissue mechanics of Metridium senile. J. Exp. Mol., 55: 763–774.Google Scholar
- Grigg, R.W., 1972. Orientation and growth form of sea fans. Limnol. Oceanogr., 17: 185–192.CrossRefGoogle Scholar
- Hausman, R.E., and A. L. Burnett, 1969. The mesoglea of hydra. J. Exp., Zool., 171: 7–14.CrossRefGoogle Scholar
- Hubbard, J.A.E.B., and Y.P. Pocock, 1972. Sediment rejection by scleractinian corals: A key to palaeo-environmental reconstruction. Geol. Rundschau., 61: 598–626.CrossRefGoogle Scholar
- Kinzie, R.A., III, 1973. The zonation of West Indian gorgonians. Bull. Mar. Sci., 23: 93–155.Google Scholar
- Koehl, M.A.R., 1976. Effects of the structure of sea anemones on the flow forces they encounter. (In prep.).Google Scholar
- la Borel, J., 1960. Contribution à 1’étude directe des peuplements benthiques sciaphiles sur substrat rocheux en Méditerranée. Rec. Trav. Stat. Mar. Endoume, 33: 117–173.Google Scholar
- Leversee, G.J., 1976. Flow and feeding in fan-shaped colonies of the gorgonian coral, Leptogorgia. Biol. Bull., (in press).Google Scholar
- Magnus, D.B.E., 1966. Zur Ökologie einer nachtaktiven Flachwasser-Seefeder (Octocorallia, Pennatularia) im Roten Meer. Veroff. Inst. Meeresforsch. Bremerhaven, 2: 369–380.Google Scholar
- Muzik, K.M., and S. A. Wainwright, 1976. Morphology and habitat of five Fijian sea fans. ( In press in Bull. Mar. Sci.)Google Scholar
- Rees, J.T., 1972. The effect of current on the growth form in an octocoral. J. Exp. Mar. Biol. Ecol., 10: 115–124.CrossRefGoogle Scholar
- Riedl, R.J., 1971. Water movement. O. Kinne, Ed., Marine Ecology, volume I. Wiley-Interscience, London, 1244 pp.Google Scholar
- Riedl, R., and H. Forstner, 1968. Wasserbewegung im Mikrobereich des Benthos. Sarsia, 34: 163–188.Google Scholar
- Rouse, H., 1961. Fluid Mechanics for Hydraulic Engineers. Dover Publications, Inc., New York, 422 pp.Google Scholar
- Rubenstein, D.I., and M. A. R. Koehl, 1976. The mechanisms of particle capture by filter feeders: Some theoretical considerations. (In press in Amer. Natur.).Google Scholar
- Sassaman, C., and C. P. Mangum, 1972. Adaptations to environmental oxygen levels in infaunal and epifaunal sea anemones. Biol. Bull., 143: 657–678.CrossRefGoogle Scholar
- Shapiro, A.H., 1961. Shape and Flow: The Fluid Dynamics of Drag. Doubleday and Co., Inc., Garden City, N.Y., 186 pp.Google Scholar
- Shinn, E., 1963. Spur and groove formation on the Florida reef tract. J. Sedimentary Petrology, 33: 291–303.Google Scholar
- Stoddart, D.R., 1969. Ecology and morphology of recent coral reefs. Biol. Rev., 44: 433–498.CrossRefGoogle Scholar
- Svoboda, A., 1970. Simulation of oscillating water movement in the laboratory forcultivation of shallow water sedentary organisms. Helogländer Wiss. Meeresunters, 20: 676–684.CrossRefGoogle Scholar
- Théodor, J., 1963. Contribution à 1’étude des gorgones. III. Trois formes adaptives d’Eunicelia stricta en fonction de la turbulence et du courant. Vie Milieu, 14: 815–818.Google Scholar
- Théodor, J., and M. Denizot, 1965. Contribution à l’étude des gorgones I: A propos de l’orientation d’organismes marins fixés végétaux et animaux en fonction du courant. Vie Milieu, 16: 237–241.Google Scholar
- Velimirov, B., 1976. Variation in forms of Eunicella cavolinii Koch (Octocorallia) related to intensity of water movement. J. Exp. Mar. Biol. Ecolo., 21: 109–117.CrossRefGoogle Scholar
- Vogel, S., and W.L. Bretz, 1972. Interfacial organisms: Passive ventilation in the velocity gradients near surfaces. Science, 175: 210–211.PubMedCrossRefGoogle Scholar
- Wainwright, S.A., W.D. Biggs, J.D. Currey, and J.M. Gosline, 1976. Mechanical Design in Organisms. Halsted Press (Wiley), New York, 423 pp.Google Scholar
- Wainwright, S.A., and J.R. Dillon, 1969. On the orientation of sea fans (genus Gorgonia). Biol. Bull., 136: 130–139.CrossRefGoogle Scholar
- Wood-Jones, F., 1909. On the growth forms and supposed species in corals. Proc. Zool. Soc. Lond., 2: 518–556.Google Scholar