Skip to main content

Bioconversions

  • Chapter
Clostridia

Part of the book series: Biotechnology Handbooks ((BTHA,volume 3))

Abstract

Among the characteristic properties of Clostridia are several that make these bacteria particularly useful agents of anaerobic bioconversions. Despite being obligate anaerobes they are not so aero-intolerant that in culture, or in washed cell suspension, they cannot survive the occasional encounter with oxygen, in this sense behaving as moderate anaerobes. Even so, they are in general highly reducing organisms capable of developing and sustaining a low redox potential (E h ) in their environment. The required reducing power is generated by their fermentative metabolism, though many species are also equipped with an uptake hydrogenase capable of utilizing H2 gas as a supplemental electron donor. Almost exclusively, they acquire their free energy from fermentation processes and different species can utilize different substrates (carbohydrates, amino acids, purines, and pyrimidines) by a variety of fermentation pathways. In consequence, the genus is a particularly rich mine of unfamiliar biochemistry and novel enzymology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aberhart, D. J., Gould, S. J., Lin, H-J., Thiruvengadam, T. K., and Weiller, B. H., 1983, Stereochemistry of lysine 2,3-aminomutase isolated from Clostridium subterminale strain SB4, J. Am. Chem. Soc. 105:5461–5469.

    Article  CAS  Google Scholar 

  • Andrew, I. G., and Morris, J. G., 1965, The biosynthesis of alanine by Clostridium kluyveri, Biochim. Biophys. Acta 97:176–179.

    Article  PubMed  CAS  Google Scholar 

  • Angermaier, L., and Simon, H., 1983, On the reduction of aliphatic and aromatic nitro compounds by Clostridia: The role of ferredoxin and its stabilization, Hoppe-Seyler’s Z. Physiol. Chem. 364:961–976.

    Article  PubMed  CAS  Google Scholar 

  • Archer, R. H., Maddox, I. S., and Chong, R., 1981, 7α-dehydroxylation of cholic acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12:46–52.

    Article  CAS  Google Scholar 

  • Ardeleanu, J., Margineanu, D-G., and Vais, H., 1984, Electrochemical conversion in biofuel cells using Clostridium butyricum or Staphylococcus aureus Oxford, Bioelectrochem. Bioenerg. 11:273–278.

    Article  Google Scholar 

  • Aries, V., and Hill, M. J., 1970, Degradation of steroids by intestinal bacteria. II. Enzymes catalysing the oxidoreduction of the 3α-, 7α- and 12α-hydroxyl groups in cholic acid and the hydroxylation of the 7-hydroxyl group, Biochim. Biophys. Acta 202:535–543.

    Article  PubMed  CAS  Google Scholar 

  • Aries, V. C., Goddard, P., and Hill, M. J., 1971, Degradation of steroids by intestinal bacteria. III. 3-oxo-5β-steroid-Δ1-dehydrogenase and 3-oxo-5β-steroid-Δ4-dehydrogenase, Biochim. Biophys. Acta 248:482–488.

    Article  CAS  Google Scholar 

  • Bader, J., and Simon, H., 1983, ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes, FEMS Microbiol. Lett. 20:171–175.

    Article  CAS  Google Scholar 

  • Bader, J., Günther, H., Rambeck, B., and Simon, H., 1978, Properties of two Clostridia strains acting as catalysts for the preparative stereospecific hydrogenation of 2-enoic acids and 2 alken-1-ols with hydrogen gas, Hoppe-Seyler’s Z. Physiol. Chem. 359:19–27.

    PubMed  CAS  Google Scholar 

  • Bader, J., Rauschenbach, P., and Simon, H., 1982, On a hitherto unknown fermentation path of several amino acids by proteolytic Clostridia, FEBS Lett. 140:67–72.

    Article  PubMed  CAS  Google Scholar 

  • Barker, H. A., 1985, β-Methylaspartate-glutamate mutase from Clostridium tetanomorphum, Methods Enzymol. 113:121–132.

    Article  PubMed  CAS  Google Scholar 

  • Barker, H. A., D’Ari, L., and Kahn, J., 1987, Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum, J. Biol. Chem. 262:8994–9003.

    PubMed  CAS  Google Scholar 

  • Barnes, P. J., Bilton, R. F., Mason, A. N., Fernandez, F., and Hill, M.J., 1975, The coupling of anaerobic steroid dehydrogenation to nitrate reduction in Pseudomonas NCIB 10590 and Clostridium paraputrificum, Biochem. Soc. Trans. 3:299–300.

    PubMed  CAS  Google Scholar 

  • Belan, A., Boite, J., Fauve, A., Gourcy, J. G., and Veschambre, H., 1987, Use of biological systems for the preparation of chiral molecules. 3. An application in pheromone synthesis: Preparation of sulcatol enantiomers, J. Org. Chem. 52:256–260.

    Article  CAS  Google Scholar 

  • Berndt, A., and Schlegel, H. G., 1975, Kinetics and properties of β keto-thiolase from Clostridium pasteurianum, Arch. Microbiol. 10:21–30.

    Article  Google Scholar 

  • Berry, D. F., Francis, A. J., and Bollag, J-M., 1987, Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions, Microbiol. Rev. 51:43–59.

    PubMed  CAS  Google Scholar 

  • Blanchard, K. C., and MacDonald, J., 1935, Bacterial metabolism. 1. The reduction of pro-pionaldehyde and of propionic acid by Clostridium acetobutylicum, J. Biol. Chem. 110:145–150.

    CAS  Google Scholar 

  • Bokkenheuser, V. D., and Winter, J., 1983, Biotransformation of steroids, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), Academic Press, New York, pp. 215–239.

    Chapter  Google Scholar 

  • Bokkenheuser, V. D., Winter, J., Dehazya, P., DeLeon, O., and Kelly, W. G., 1976, Formation and metabolism of tetrahydrodeoxycorticosterone by human fecal flora, J. Steroid Biochem. 7:837–843.

    Article  PubMed  CAS  Google Scholar 

  • Bokkenheuser, V. D., Winter, J., Cohen, B. I., O’Rourke, S. O., and Mosbach, E. H., 1983, Inactivation of contraceptive steroid hormones by human intestinal Clostridia, J. Clin. Microbiol. 18:500–504.

    PubMed  CAS  Google Scholar 

  • Bokkenheuser, V. D., Morris, G. N., Ritchie, A. E., Holdeman, L. V., and Winter, J., 1984, Biosynthesis of androgen from Cortisol by a species of Clostridium recovered from human fecal flora, J. Infect. Dis. 149:489–494.

    Article  PubMed  CAS  Google Scholar 

  • Bokkenheuser, V. D., Winter, J., Morris, G. N. and Locascio, S., 1986, Steroid desmolase synthesis by Eubacterium desmolans and Clostridium cadaveris, Appl. Env. Microbiol. 52:1153–1156.

    CAS  Google Scholar 

  • Bostmembrun-Desrut, M., Kergomard, A., Renard, M. F., and Veschambre, H., 1983, Microbiological reduction of cyclohexenones by growing Clostridium cells, Agric. Biol. Chem. 47:1997–2000.

    Article  CAS  Google Scholar 

  • Brot, N., and Weissbach, H., 1970, Conversion of L-tyrosine to phenol (Clostridium tetanomorphum), Methods Enzymol. 17A:642–645.

    Article  Google Scholar 

  • Buckel, W. C., 1980, The reversible dehydration of (R)-2-hydroxyglutarate to (E)glutaconate, Eur. J. Biochem. 106:439–447.

    Article  PubMed  CAS  Google Scholar 

  • Bühler, M., Giesel, H., Tischer, W., and Simon, H., 1980, Occurrence and the possible physiological role of 2-enoate reductases. FEBS Lett. 109:244–246.

    Article  PubMed  Google Scholar 

  • Cameron, D. C., and Cooney, C. L., 1986, A novel fermentation: the production of R(—)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum, Biotechnology 4:651–654.

    Article  CAS  Google Scholar 

  • Campbell, L. L., 1957, Reductive degradation of pyrimidines, J. Bacteriol. 73:220–224.

    PubMed  CAS  Google Scholar 

  • Chirpich, T. P., and Barker, H. A., 1971, Lysine-2,3-aminomutase (Clostridium), Methods Enzymol. 17B:215–222.

    Article  Google Scholar 

  • Cozzani, I., Barsacchi, R., Dibenedetto, G., Saracchi, L., and Falcone, G., 1975, Regulation of breakdown and synthesis of L-glutamate decarboxylase in Clostridium perfringens, J. Bacteriol. 123:1115–1123.

    PubMed  CAS  Google Scholar 

  • Daldal, F., and Applebaum, J., 1985, Cloning and expression of Clostridium pasteurianum galactokinase gene in Escherichia coli K-12 and nucleotide sequence analyses of a region affecting the amount of the enzyme. J. Mol. Biol. 186:533–546.

    Article  PubMed  CAS  Google Scholar 

  • D’Ari, L., and Barker, H. A., 1985, pCresol formation by cell-free extracts of Clostridium difficile, Arch. Microbiol. 143:311–312.

    Article  PubMed  Google Scholar 

  • Datta, R., and Zeikus, J. G., 1985, Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids, Appl. Env. Microbiol. 49:522–529.

    CAS  Google Scholar 

  • Decker, K., and Hamm, H. H., 1980, A convenient biosynthetic method for the preparation of radioactive flavin nucleotides using Clostridium kluyveri, Methods Enzymol. 66E:227–235.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth, G. L., 1983, Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri, Arch. Biochem. Biophys. 221:565–569.

    Article  PubMed  CAS  Google Scholar 

  • Dürre, P., and Andreesen, J. R., 1983, Purine and glycine metabolism by purinolytic Clostridia, J. Bacteriol. 154:192–199.

    PubMed  Google Scholar 

  • Edenharder, R., and Deser, H. J., 1981, The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic, chenodeoxycholic and deoxycholic acid by lecithinase-negative Clostridia. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. Reihe B 174:91–104.

    CAS  Google Scholar 

  • Edenharder, R., and Knaflic, T., 1981, Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-negative Clostridia. J. Lipid Res. 22:652–658.

    PubMed  CAS  Google Scholar 

  • Edenharder, R., and Schneider, J., 1985, 12β-Dehydrogenation of bile acids by Clostridium paraputrificum, Clostridium tertium, and Clostridium difficile and epimerization of carbon-12 of deoxycholic acid by co-cultivation with 12α-dehydrogenating Eubacterium lentum, Appl. Env. Microbiol. 49:964–968.

    CAS  Google Scholar 

  • Edwards, D. I., Knox, R. J., Skolimowski, I. M., and Knight, R. C., 1982, Mode of action of nitroimidazoles, Eur. J. Chemother. Antibiot. 2:65–72.

    Google Scholar 

  • Egerer, P., and Simon, H., 1982, Hydrogenation with entrapped Clostridium spec. LAI and observations on its stability, Biotechnol. Lett. 4:501–506.

    Article  CAS  Google Scholar 

  • Evans, W. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature 270:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, V. M., 1983, An electrochemical cell for reduction of biochemicals: its application to the study of the effect of pH and redox potential on the activity of hydrogenases. Anal. Biochem. 130:54–59.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari, A., Scolastinco, C., and Beretta, L., 1977, On the mechanism of cholic acid 7α-dehydroxylation by a Clostridium bifermentans cell-free extract, FEBS Lett. 75:166–168.

    Article  PubMed  CAS  Google Scholar 

  • Forsberg, C. W., 1987, Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species, Appl. Env. Microbiol. 53:639–643.

    CAS  Google Scholar 

  • Francis, A. J., and Dodge, C. J., 1988, Anaerobic microbial dissolution of transition and heavy metal oxides, Appl. Env. Microbiol. 54:1009–1014.

    CAS  Google Scholar 

  • Giesel, H., and Simon, H., 1983, On the occurrence of enoate reductase and 2-oxo-carboxy-late reductase in Clostridia, and some observations on the amino acid fermentation by Peptostreptococcus anaerobius, Arch. Microbiol. 135:51–57.

    Article  PubMed  CAS  Google Scholar 

  • Goddard, P., Fernandez, F., West, B., Hill, M. J., and Barnes, P., 1975, The nuclear de-hydrogenation of steroids by intestinal bacteria, J. Med. Microbiol. 8:429–435.

    Article  PubMed  CAS  Google Scholar 

  • Gottschalk, G., and Bender, R., 1982, D-Gluconate dehydratase from Clostridiumpasteurianum, Methods Enzymol. 90:283–287.

    Article  PubMed  CAS  Google Scholar 

  • Graves, M. C., Mullenbach, G. T., and Rabinowitz, J. C., 1985, Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene, Proc. Natl. Acad. Sci. USA 82:1653–1657.

    Article  PubMed  CAS  Google Scholar 

  • Hardman, J. K., 1962, γ-Hydroxybutyrate dehydrogenase from Clostridium aminobutyricum, Methods Enzymol. 5:778–783.

    Article  CAS  Google Scholar 

  • Harnick, M., Aharonowitz, Y., Lamed, R., and Kashman, Y., 1983, Tetra- and hexa- hydro derivatives of aldosterone and 18-hydroxycortico-sterone by chemical and microbial reductions, Steroid Biochem. 19:1441–1450.

    Article  Google Scholar 

  • Harris, J. N., and Hylemon, P. B., 1978, Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium Upturn, Biochim. Biophys. Acta 528:148–157.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, G., Curie, C., and Laishley, E. J., 1984, Purification and characterisation of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum, Arch. Microbiol. 138:72–78.

    Article  PubMed  CAS  Google Scholar 

  • Hartmanis, M. G. N., 1987, Butyrate kinase from Clostridium acetobutylicum, J. Biol. Chem. 262:617–621.

    PubMed  CAS  Google Scholar 

  • Hartmanis, M. G. N., and Stadtman, T. C., 1986, Diol metabolism and diol dehydratase in Clostridium glycolicum, Arch. Biochem. Biophys. 245:144–152.

    Article  PubMed  CAS  Google Scholar 

  • Hartrampf, G., and Buckel, W., 1984, The stereochemistry of the formation of the methyl group in the glutamate mutase-catalyzed reaction in Clostridium tetanomorphum, FEBS Lett. 171:73–78.

    Article  PubMed  CAS  Google Scholar 

  • Hartrampf, G., and Buckel, W., 1986, On the steric course of the adenosylcobalamin-dependent 2-methyleneglutarate mutase reaction in Clostridium barkeri, Eur. J. Biochem. 156:301–304.

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa, S., and Hattori, T., 1970, 7α-Dehydroxylation of cholic acid by Clostridium bifermentans strain ATCC 9714 and Clostridium sordellii strain NCIB 2629, FEBS Lett. 6:131–133.

    Article  PubMed  CAS  Google Scholar 

  • Heritage, A. D., and MacRae, I. C, 1977, Identification of intermediates formed during the degradation of hexachlorocyclohexanes by Clostridium sphenoides, Appl. Env. Microbiol. 33:1295–1297.

    CAS  Google Scholar 

  • Hirano, S., Masuda, N., Oda, H., and Mukai, H., 1981, Transformation of bile acids by Clostridium perfringens, Appl. Env. Microbiol. 42:394–399.

    CAS  Google Scholar 

  • Holcenberg, J. S., and Stadtman, E. R., 1969, Nicotinic acid metabolism. III. Purification and properties of a nicotinic acid hydroxylase, J. Biol. Chem. 244:1194–1203.

    PubMed  CAS  Google Scholar 

  • Hsiang, M. W., and Bright, H. J., 1969, β-Methylaspartase from Clostridium tetanomorphum. Meth. Enzymol. 13:347–353.

    Article  CAS  Google Scholar 

  • Huijghebaert, S. M., and Eyssen, H. J., 1982, Specificity of the bile salt sulphatase from Clostridium S1, Appl. Env. Microbiol. 44:1030–1034.

    CAS  Google Scholar 

  • Hunninghake, D., and Grisolia, S., 1967, Uracil and thymine reductases, Methods Enzymol. 12A:50–59.

    Article  Google Scholar 

  • Hylemon, P. B., and Glass, T. L., 1983, Biotransformation of bile acids and cholesterol by the intestinal microflora, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), Academic Press, New York, pp. 189–213.

    Chapter  Google Scholar 

  • Imhoff, D., and Andreesen, J. R., 1979, Nicotinic acid hydroxylase from Clostridium barkerii: Selenium-dependent formation of active enzyme, FEMS Microbiol. Lett. 5:155–158.

    Article  CAS  Google Scholar 

  • Ishii, K., Kudo, T., Honda, H., and Horikoshi, K., 1983, Molecular cloning of β-isopropylma-late dehydrogenase gene from Clostridium butyricum M588, Agric. Biol. Chem. (Tokyo) 47:2313–2318.

    Article  CAS  Google Scholar 

  • Jagnow, G., Haider, K., and Ellwardt, P. C., 1977, Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultatively anaerobic bacteria, Arch. Microbiol. 115:285–292.

    Article  PubMed  CAS  Google Scholar 

  • Jeng, I. M., and Barker, H. A., 1974, Purification and properties of a L-3-aminobutyryl CoA deaminase from a lysine-fermenting Clostridium, J. Biol. Chem. 249:6578–6584.

    PubMed  CAS  Google Scholar 

  • Jeng, I. M., Somack, R., and Barker, H. A., 1974, Ornithine degradation in Clostridium sticklandii: Pyridoxal phosphate and coenzyme A-dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl CoA, Biochemistry 13:2898–2903.

    Article  PubMed  CAS  Google Scholar 

  • Jewell, J. B., Coutinho, J. B., and Kropinski, A. W., 1986, Bioconversion of propionic, valeric and 4-hydroxybutyric acids into the corresponding alcohols by Clostridium acetobutylicum NRRL 527, Curr. Microbiol. 13:215–220.

    Article  CAS  Google Scholar 

  • Kaplan, B. H., and Stadtman, E. R., 1971, Ethanolamine deaminase (Clostridium sp.), Methods Enzymol. 17:818–824.

    Article  Google Scholar 

  • Kaplan, F., Setlow, P., and Kaplan, N. O., 1969, Purification and properties of a DPNH-TPNH diaphorase from Clostridium kluyveri, Arch. Biochem. Biophys. 132:91–98.

    Article  PubMed  CAS  Google Scholar 

  • Karube, I., Matsunaga, T., Tsuru, S., and Suzuki, S., 1977, Biochemical fuel cell utilising immobilised cells of Clostridium butyricum, Biotechnol. Bioeng. 19:1727–1733.

    Article  CAS  Google Scholar 

  • Karube, I., Urano, N., Matsunaga, T., and Suzuki, S., 1982, Hydrogen production from glucose by immobilised growing cells of Clostridium butyricum, Eur. J. Appl. Microbiol. Biotechnol. 16:5–9.

    Article  CAS  Google Scholar 

  • Karube, I., Urano, N., Yamada, T., Hirochika, H., and Sakaguchi, K., 1983, Cloning and expression of the hydrogenase gene from Clostridium butyricum in Escherichia coli, FEBS Lett. 158:119–122.

    Article  PubMed  CAS  Google Scholar 

  • Klier, K., Kresze, G., Werbitsky, O., and Simon, H., 1987, The microbial reductive splitting of the N-O bond of dihydrooxazines; an alternative to the chemical reduction, Tetrahedron Lett. 28:2677–2680.

    Article  CAS  Google Scholar 

  • Klotzsch, H. R., 1969, Phosphotransacetylase from Clostridium kluyveri, Methods Enzymol. 13:381–386.

    Article  CAS  Google Scholar 

  • Knowles, J., Lehtovaara, P., and Teeri, T., 1987, Cellulase families and their genes, Trends Biotechnol. 5:255–261.

    Article  CAS  Google Scholar 

  • Kole, M. M., and Altosaar, I., 1985, Conversion of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium absonum in culture and by immobilized cells, FEMS Microbiol. Lett. 28:69–72.

    Article  CAS  Google Scholar 

  • Krafft, A. E., Winter, J., Bokkenheuser, V. D., and Hylemon, P. B., 1987, Cofactor requirements of steroid-17–20-desmolase and 20α-hydroxysteroid dehydrogenase activities in cell extracts of Clostridium scindens, J. Steroid Biochem. 28:49–54.

    Article  PubMed  CAS  Google Scholar 

  • Kreis, W., and Hession, C, 1973, Isolation and purification of L-methionine-α-deamino-γ-mercaptomethane lyase (L-methioninase) from Clostridium sporogenes, Cancer Res. 33:1862–1865.

    PubMed  CAS  Google Scholar 

  • Krumholtz, L. R., and Bryant, M. P., 1985, Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate, Int. J. Syst. Bacteriol. 35:454–456.

    Article  Google Scholar 

  • Kuchta, R. D., and Abeles, R. H., 1985, Lactate reduction in Clostridium propionicum. Purification and properties of lactylCoA dehydratase, J. Biol. Chem. 260:13181–13189.

    PubMed  CAS  Google Scholar 

  • Lamed, R., Keinan, E., and Zeikus, J. G., 1981, Potential applications of an alcohol/ketone oxidoreductase from thermophilic bacteria, Enz. Microb. Technol. 3:144–148.

    Article  CAS  Google Scholar 

  • Lebertz, H., Simon, H., Courtney, L. F., Benkovic, S. J., Zydowsky, L. D., Lee, K., and Floss, H. G., 1987, Stereochemistry of acetic acid formation from 5-methyltetrahydrofolate by Clostridium thermoaceticum, J. Am. Chem. Soc. 109:3173–3174.

    Article  CAS  Google Scholar 

  • Lieberman, I., and Barker, H. A., 1955, Amino acid acetylase of Clostridium kluyveri, Methods Enzymol. 1:616–619.

    Article  CAS  Google Scholar 

  • Liu, C-L., and Mortenson, L. E., 1984, Formate dehydrogenase of Clostridium pasteurianum, J. Bacteriol. 159:375–380.

    PubMed  CAS  Google Scholar 

  • Ljungdahl, L. G., and Andreesen, J. R., 1978, Formate dehydrogenase, a selenium-tungsten enzyme from Clostridium thermoaceticum, Methods Enzymol. 53:360–372.

    Article  PubMed  CAS  Google Scholar 

  • Lovitt, R. W., Kell, D. B., and Morris, J. G., 1986a, Proline reduction by Clostridium sporogenes is coupled to vectorial proton ejection, FEMS Microbiol. Lett. 36:269–273.

    Article  CAS  Google Scholar 

  • Lovitt, R. W., Walter, R. P., Morris, J. G., and Kell, D. B., 1986b, Conductimetric assessment of the biomass content is suspensions of immobilised (gel-entrapped) microorganisms. Appl. Microbiol. Biotechnol. 23:168–173.

    Article  CAS  Google Scholar 

  • Lovitt, R. W., James, E. W., Kell, D. B., and Morris, J. G., 1987a, Bioelectrochemical transformations catalyzed by Clostridium sporogenes, in: Bioreactors and Biotransformations (G. W. Moody and P. B. Baker, ed.), Elsevier, Amsterdam, pp. 263–278.

    Google Scholar 

  • Lovitt, R. W., Morris, J. G., and Kell, D. B., 1987b, The growth and nutrition of Clostridium sporogenes NCIB 8053 in defined media, J. Appl Bacteriol. 62:71–80.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, I. A., and Hill, M. J., 1978, The inability of nuclear dehydrogenating Clostridia to oxidise bile salt hydroxyl groups, Experientia 35:722–723.

    Article  Google Scholar 

  • Macdonald, I. A., and Roach, P. B., 1981, Bile salt induction of 7α- and 7β-hydroxysteroid dehydrogenases in Clostridium absonum, Biochim. Biophys. Acta 665:262–269.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, I. A., and Sutherland, J. D., 1983, Further studies on the bile salt induction of 7α-and 7β-hydroxysteroid dehydrogenases in Clostridium absonum, Biochim. Biophys. Acta 750:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, I. A., Meier, E. C., Mahony, D. E., and Costain, G. A., 1976, 3α-, 7α-, and 12α-hydroxysteroid dehydrogenase activities from Clostridium perfringens, Biochim. Biophys. Acta 450:142–153.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, I. A., Jellet, J. F., and Mahony, D. E., 1979, 12α-hydroxy-steroid dehydrogenase from Clostridium group P, strain C48–50 ATCC 29733; partial purification and characterization, J. Lipid Res. 20:234–239.

    PubMed  CAS  Google Scholar 

  • Macdonald, I. A., Hutchison, D. M., Forrest, T. P., Bokkenheuser, V. D., Winter, J., and Holdeman, L. V., 1983a, Metabolism of primary bile acids by Clostridium perfringens, J. Steroid Biochem. 18:97–104.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, I. A., White, B. A., and Hylemon, P. B., 1983b, Separation of 7α- and 7β-hydroxysteroid dehydrogenase activities from Clostridium absonum ATCC 27555 and cellular responses of this organism to bile acid inducers, J. Lipid Res. 24:1119–1126.

    PubMed  CAS  Google Scholar 

  • Macdonald, I. A., Williams, C. N., Sutherland, J. D., and MacDonald, A. C., 1983c, Estimation of ursodeoxycholic acid in human and bear biles using Clostridium absonum 7β-hy-droxysteroid dehydrogenase, Anal. Biochem. 135:349–354.

    Article  PubMed  CAS  Google Scholar 

  • Machacek-Pitsch, C., Rauschenbach, P., and Simon, H., 1985, Observations on the elimination of water from 2-hydroxy-acids in the metabolism of amino acids by Clostridium sporogenes, Biol. Chem. Hoppe-Seyler 366:1057–1062.

    Article  PubMed  CAS  Google Scholar 

  • Mahony, D. E., Mier, C. E., Macdonald, I. A. and Holdeman, L. V., 1977, Bile salt degradation by nonfermentative Clostridia. Appl. Env. Microbiol. 34:419–423.

    CAS  Google Scholar 

  • Masuda, N., 1981, Deconjugation of bile salts by Bacteroides and Clostridium, Microbiol. Immunol. 25:1–11.

    PubMed  CAS  Google Scholar 

  • Matsunaga, T., Matsunaga, N., and Nishimura, S., 1985, Regeneration of NAD(P)H by immobilised whole cells of Clostridium butyricum under hydrogen high pressure, Biotechnol. Bioeng. 27:1277–1281.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, C. L., Roos, J. W. and Papoutsakis, E. T., 1986, Carbon monoxide gassing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 24:159–167.

    CAS  Google Scholar 

  • Möller, B., Hippe, H., and Gottschalk, G., 1986, Degradation of various amine compounds by mesophilic Clostridia, Arch. Microbiol. 145:85–90.

    Article  PubMed  Google Scholar 

  • Monticello, D. J., Hadioetomo, R. S., and Costilow, R. N., 1984, Isoleucine synthesis by Clostridium sporogenes from propionate or α-methylbutyrate, J. Gen. Microbiol. 130:309–318.

    PubMed  CAS  Google Scholar 

  • Morris, G. N., Winter, J., Cato, E. P., Ritchie, A. E., and Bokkenheuser, V. D., 1985, Clostridium scindens sp. nov., a human intestinal bacterium with a desmolytic activity on corticoids, Int. J. Syst. Bacteriol. 35:478–481.

    Article  CAS  Google Scholar 

  • Nair, P. P., Gordon, M., Gordon, S., Reback, J., and Mendeloff, A. I., 1965, The cleavage of bile acid conjugates by cell-free extracts from Clostridium perfringens, Life Sci. 4:1887–1892.

    Article  PubMed  CAS  Google Scholar 

  • Najjar, V. A., 1957, Determination of amino acids by specific bacterial decarboxylases in the Warburg apparatus. Methods Enzymol. 3:462–466.

    Article  Google Scholar 

  • O’Brien, R. W., and Morris, J. G., 1971, The ferredoxin-dependent reduction of chloramphenicol by Clostridium acetobutylicum, J. Gen. Microbiol. 67:265–271.

    Article  PubMed  Google Scholar 

  • O’Brien, R. W., and Morris, J. G., 1972, Effect of metronidazole on hydrogen production by Clostridium acetobutylicum, Arch. Microbiol. 84:225–233.

    Google Scholar 

  • Ohisa, N., Yamaguchi, M., and Kurihara, N., 1980, Lindane degradation by cell-free extracts of Clostridium rectum, Arch. Microbiol. 125:221–225.

    Article  PubMed  CAS  Google Scholar 

  • Owen, R. W., 1985, Biotransformation of bile acids by Clostridia, J. Med. Microbiol. 20:233–238.

    Article  PubMed  CAS  Google Scholar 

  • Paulin, L., and Pösö, H., 1983, Ornithine decarboxylase activity from an extremely thermophilic bacterium, Clostridium thermohydrosulfuricum. Effect of GTP analogues on enzyme activity, Biochim. Biophys. Acta 742:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Pezacka, E., and Wood, H. G., 1984, The synthesis of acetylCoA by Clostridium thermoaceticum from CO2, H2, CoA and methyltetrahydrofolate, Arch. Microbiol. 137:63–69.

    Article  PubMed  CAS  Google Scholar 

  • Pitsch, C., and Simon, H., 1982, The stereochemical course of the water elimination from (2R)-phenyllactate in the amino acid fermentation of Clostridium sporogenes, Hoppe Seyler’s Z. Physiol. Chem. 363:1253–1257.

    Article  PubMed  CAS  Google Scholar 

  • Pons, J-L., Rimbault, A., Darbord, J-C., and Leluan, G., 1984, Biosynthesis of toluene by Clostridium aerofoetidum strain WS, Ann. Microbiol. 135B:219–222.

    Google Scholar 

  • Poston, J. M., 1976, Leucine, 2,3-aminomutase, an enzyme of leucine catabolism, J. Biol. Chem. 251:1859–1863.

    PubMed  CAS  Google Scholar 

  • Rakosky, J., Zimmerman, L. N., and Beck, J. V., 1955, Guanine degradation by Clostridium acidiurici. II. Isolation and characterization of guanase, J. Bacteriol. 69:566–570.

    PubMed  CAS  Google Scholar 

  • Rao, G., and Mutharasan, R., 1987, Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes, Appl. Env. Microbiol. 53:1232–1235.

    CAS  Google Scholar 

  • Rice, D. W., Hornby, D. P., and Engel, P. C., 1985, Crystallisation of a NAD-dependent glutamate dehydrogenase from Clostridium symbiosum, J. Mol. Biol. 181:147–149.

    Article  PubMed  CAS  Google Scholar 

  • Robben, J., Parmentier, G., and Eyssen, H., 1986, Isolation of a rat intestinal Clostridium strain producing 5α- and 5β-bile salt, 3α-sulfatase activity, Appl. Env. Microbiol. 51:32–38.

    CAS  Google Scholar 

  • Sacks, L. E., 1985, Increased formation of arginine deiminase by Clostridium perfringens FD-1 growing in the presence of caffeine, Experientia 41:1435–1436.

    Article  PubMed  CAS  Google Scholar 

  • Sacquet, E. C., Raibard, P. M., Mejean, C., Riottot, M. J., Leprince, C., and Leglise, P. C., 1979, Bacterial formation of ω-muricholic acid in rats, Appl. Env. Microbiol. 37:1127–1131.

    CAS  Google Scholar 

  • Sanchez-Riéra, F., Cameron, D. C., and Cooney, C. L., 1987, Influence of environmental factors in the production of R(—)-1,2,propanediol by Clostridium thermosaccharolyticum, Biotechnol. Lett. 9:449–454.

    Article  Google Scholar 

  • Schink, B., 1986, Environmental aspects of the degradation potential of anaerobic bacteria, in: Biology of Anaerobic Bacteria (H. C. Dubourguier et al., ed.), Elsevier, Amsterdam, pp. 2–15.

    Google Scholar 

  • Scott, T. A., Bellion, E., and Matley, M., 1969, The conversion of N-formyl-L-aspartate into nicotinic acid by extracts of Clostridium acetobutylicum, Eur. J. Biochem. 10:318–323.

    Article  PubMed  CAS  Google Scholar 

  • Sedlmaier, H., and Simon, H., 1985, Purification and some properties of an acryloylCoA reductase of Clostridium kluyveri, Biol. Chem. Hoppe-Seyler 366:953–962.

    Article  Google Scholar 

  • Seki, S., Hattori, Y., Hasegawa, T., Haraguchi, H., and Ishimoto, M., 1987, Studies on nitrate reductase of Clostridium perfringens. IV. Identification of metals, molybdenum cofactor and iron-sulfur cluster, J. Biochem. (Tokyo) 101:503–510.

    PubMed  CAS  Google Scholar 

  • Sekiguchi, S., Seki, S., and Ishimoto, M., 1983, Purification and some properties of nitrite reductase from Clostridium perfringens, J. Biochem. (Tokyo) 94:1053–1059.

    PubMed  CAS  Google Scholar 

  • Seto, B., 1980, The Stickland reaction, in: Diversity of Bacterial Respiratory Systems, Vol. 2 (C.J. Knowles, ed.), CRC, Boca Raton, pp. 50–64.

    Google Scholar 

  • Seto, B., and Stadtman, T. C., 1976, Purification and properties of proline reductase from Clostridium sticklandii, J. Biol. Chem. 251:2435–2439.

    PubMed  CAS  Google Scholar 

  • Shimoi, H., Nagata, S., Esaki, N., Tanaka, H., and Soda, K., 1987, Leucine dehydrogenase of a thermophilic anaerobe, Clostridium thermoaceticum: Gene cloning, purification and characterisation, Agric. Biol. Chem. Tokyo 51:3375–3382.

    Article  CAS  Google Scholar 

  • Sih, C. J., and Chen, C-S., 1984, Microbial asymmetric catalysis-enantioselective reduction of ketones, Angew. Chem. Int. Ed. Engl. 23:570–578.

    Article  Google Scholar 

  • Simon, H., and Günther, H., 1983, Chiral synthons by biohydrogenation or electroenzymatic reductions, in: Biomimetic Chemistry (Z. Yoshida and N. Ise, eds.), Elsevier, Amsterdam, pp. 207–227.

    Google Scholar 

  • Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J., 1984, Biohydrogenation and electromicrobial and electroenzymatic reduction methods for the preparation of chiral compounds, Ann. N.Y. Acad. Sci. 434:171–185.

    Article  CAS  Google Scholar 

  • Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J., 1985, Chiral compounds synthesised by biocatalytic reductions, Angew. Chem. Int. Ed. Engl. 24:539–555.

    Article  Google Scholar 

  • Sinskey, A. J., Akedo, M., and Cooney, C. L., 1981, Acrylate fermentations, in: Trends in the Biology of Fermentations for Fuels and Chemicals, (A. Hollaender et al., eds.), Plenum Press, New York, pp. 473–492.

    Chapter  Google Scholar 

  • Sleat, R., and Robinson, J. P., 1984, The bacteriology of anaerobic degradation of aromatic compounds, J. Appl. Bacteriol. 57:381–394.

    Article  PubMed  CAS  Google Scholar 

  • Sliwkowski, M. X., and Hartmanis, M. G. N., 1984, Simultaneous single step purification of thiolase and NADP-dependent 3-hydroxybutyrylCoA dehydrogenase from Clostridium kluyveri, Anal. Biochem. 141:344–347.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman, T. C., and Grant, M. A., 1971, Lβ-Lysine mutase (Clostridium sticklandii). Dα-Lysine mutase (Clostridium), Methods Enzymol. 17B:206–215.

    Article  Google Scholar 

  • Stellwag, E. J., and Hylemon, P. B., 1979, 7α-Dehydroxylation of cholic acid and chenodeoxy-cholic acid by Clostridium Upturn, J. Lipid Res. 20:325–333.

    PubMed  CAS  Google Scholar 

  • Stieb, M., and Schink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming obligately syntrophic bacterium, Arch. Microbiol. 140:387–390.

    Article  CAS  Google Scholar 

  • Stöcklein, W., and Schmidt, H-L., 1985, Evidence for L-threonine cleavage and allothreonine formation by different enzymes from Clostridium pasteurianum: Threonine aldolase and serine hydroxymethyl transferase, Biochem. J. 232:621–622.

    PubMed  Google Scholar 

  • Stokes, N. A., and Hylemon, P. B., 1985, Characterization of Δ4–3-ketosteroid-5β-reductase and 3β-hydroxysteroid dehydrogenase in cell extracts of Clostridium innocuum, Biochim. Biophys. Acta 836:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, J. D., and Macdonald, I. A., 1982, The metabolism of primary, 7-oxo- and 7β-hydroxy bile acids by Clostridium absonum, J. Lipid Res. 23:726–732.

    PubMed  CAS  Google Scholar 

  • Sutherland, J. D., and Williams, C. N., 1985, Bile acid induction of 7α- and 7β-hydroxysteroid dehydrogenases in Clostridium limosum, J. Lipid Res. 26:344–350.

    PubMed  CAS  Google Scholar 

  • Sutherland, J. D., Williams, C. N., Hutchison, D. M., and Holdeman, L. V., 1987, Oxidation of primary bile acids by 7α-hydroxysteroid dehydrogenase-elaborating Clostridium bifermentans soil isolate, Can. J. Microbiol. 33:663–669.

    Article  PubMed  CAS  Google Scholar 

  • Szulmajster, J., 1958, Bacterial degradation of creatinine. II. Creatinine desimidase, Biochim. Biophys. Acta 30:154–163.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, H., and Stadtman, T. C., 1979, Selenium-dependent clostridial glycine reductase; purification and characterization of the two membrane-associated protein components, J. Biol. Chem. 254:447–452.

    PubMed  CAS  Google Scholar 

  • Taya, M., Yagi, Y., and Kobayashi, T., 1986, Production of acetone and butanol using immobilised growing cells of Clostridium acetobutylicum, Agric. Biol. Chem. Tokyo 50:2141–2142.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Tran, N. D., Romette, J. L., and Thomas, D., 1983, An enzyme electrode for specific determination of L-lysine: A real-time control sensor, Biotechnol. Bioeng. 25:329–340.

    Article  PubMed  CAS  Google Scholar 

  • Tran-Din, K., and Gottschalk, G., 1985, Formation of D(—)1,2 propanediol and D(—)lactate from glucose by Clostridium sphenoides under phosphate limitation, Arch. Microbiol. 142:87–92.

    Article  CAS  Google Scholar 

  • Tsai, L., Pastan, I., and Stadtman, E. R., 1966, Nicotinic acid metabolism II. The isolation and characterisation of intermediates in the fermentation of nicotinic acid, J. Biol. Chem. 241:1807–1813.

    PubMed  CAS  Google Scholar 

  • Usdin, K. P., Zappe, H., Jones, D. T., and Woods, D. R., 1986, Cloning, expression and purification of glutamine synthetase from Clostridium acetobutylicum, Appl. Env. Microbiol. 52:413–419.

    CAS  Google Scholar 

  • Verhulst, A., Semjen, G., Meerts, U., Janssen, G., Parmentier, G., Asselberghs, S., van Hespen, H., and Eyssen, H., 1985, Biohydrogenation of linoleic acid by Clostridium sporogenes, Clostridium bifermentans, Clostridium sordelli and Bacteroides sp., FEMS Microb. Ecol. 31:255–259.

    Article  CAS  Google Scholar 

  • Verma, J. N., and Goldfine, H., 1985, Phosphatidylserine decarboxylase from Clostridium butyricum, J. Lipid Res. 26:610–616.

    PubMed  CAS  Google Scholar 

  • Wagner, R., Cammack, R., and Andreesen, J. R., 1984, Purification and characterisation of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium. Biochim. Biophys. Acta 791:63–74.

    Article  CAS  Google Scholar 

  • Waterson, R. M., and Conway, R. S., 1981, EnoylCoA hydratases from Clostridium acetobutylicum and Escherichia coli, Methods Enzymol. 71:421–430.

    Article  PubMed  CAS  Google Scholar 

  • Westheimer, F. H., 1969, Acetoacetate decarboxylase from Clostridium acetobutylicum, Methods Enzymol. 14:231–241.

    Article  CAS  Google Scholar 

  • White, H., Lebertz, H., Thanos, I., and Simon, H., 1987, Clostridium thermoaceticum forms methanol from carbon monoxide in the presence of viologen dyes, FEMS Microbiol. Lett. 43:173–176.

    Article  CAS  Google Scholar 

  • Whitehead, T. R., and Rabinowitz, J. C., 1986, Cloning and expression in Escherichia coli of the gene for 10-formyltetrahydrofolate synthetase from Clostridium acidiurici, J. Bacteriol. 167:205–209.

    PubMed  CAS  Google Scholar 

  • Wildenauer, F. X., and Winter, J., 1986, Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes, FEMS Microbiol. Ecol. 38:373–379.

    Article  CAS  Google Scholar 

  • Young, L. Y., 1984, Anaerobic degradation of aromatic compounds, in: Microbial Degradation of Organic Compounds (D. T. Gibson, ed.), Marcel Dekker, New York, pp. 487–523.

    Google Scholar 

  • Youngleson, J. S., Santangelo, J. D., Jones, D. T., and Woods, D. R., 1988, Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli, Appl. Env. Microbiol. 54:676–682.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morris, J.G. (1989). Bioconversions. In: Minton, N.P., Clarke, D.J. (eds) Clostridia. Biotechnology Handbooks, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9718-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9718-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9720-6

  • Online ISBN: 978-1-4757-9718-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics