Clostridia pp 193-225 | Cite as


  • J. Gareth Morris
Part of the Biotechnology Handbooks book series (BTHA, volume 3)


Among the characteristic properties of Clostridia are several that make these bacteria particularly useful agents of anaerobic bioconversions. Despite being obligate anaerobes they are not so aero-intolerant that in culture, or in washed cell suspension, they cannot survive the occasional encounter with oxygen, in this sense behaving as moderate anaerobes. Even so, they are in general highly reducing organisms capable of developing and sustaining a low redox potential (E h ) in their environment. The required reducing power is generated by their fermentative metabolism, though many species are also equipped with an uptake hydrogenase capable of utilizing H2 gas as a supplemental electron donor. Almost exclusively, they acquire their free energy from fermentation processes and different species can utilize different substrates (carbohydrates, amino acids, purines, and pyrimidines) by a variety of fermentation pathways. In consequence, the genus is a particularly rich mine of unfamiliar biochemistry and novel enzymology.


Bile Acid Cholic Acid Ursodeoxycholic Acid Chenodeoxycholic Acid Clostridium Perfringens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberhart, D. J., Gould, S. J., Lin, H-J., Thiruvengadam, T. K., and Weiller, B. H., 1983, Stereochemistry of lysine 2,3-aminomutase isolated from Clostridium subterminale strain SB4, J. Am. Chem. Soc. 105:5461–5469.CrossRefGoogle Scholar
  2. Andrew, I. G., and Morris, J. G., 1965, The biosynthesis of alanine by Clostridium kluyveri, Biochim. Biophys. Acta 97:176–179.PubMedCrossRefGoogle Scholar
  3. Angermaier, L., and Simon, H., 1983, On the reduction of aliphatic and aromatic nitro compounds by Clostridia: The role of ferredoxin and its stabilization, Hoppe-Seyler’s Z. Physiol. Chem. 364:961–976.PubMedCrossRefGoogle Scholar
  4. Archer, R. H., Maddox, I. S., and Chong, R., 1981, 7α-dehydroxylation of cholic acid by Clostridium bifermentans, Eur. J. Appl. Microbiol. Biotechnol. 12:46–52.CrossRefGoogle Scholar
  5. Ardeleanu, J., Margineanu, D-G., and Vais, H., 1984, Electrochemical conversion in biofuel cells using Clostridium butyricum or Staphylococcus aureus Oxford, Bioelectrochem. Bioenerg. 11:273–278.CrossRefGoogle Scholar
  6. Aries, V., and Hill, M. J., 1970, Degradation of steroids by intestinal bacteria. II. Enzymes catalysing the oxidoreduction of the 3α-, 7α- and 12α-hydroxyl groups in cholic acid and the hydroxylation of the 7-hydroxyl group, Biochim. Biophys. Acta 202:535–543.PubMedCrossRefGoogle Scholar
  7. Aries, V. C., Goddard, P., and Hill, M. J., 1971, Degradation of steroids by intestinal bacteria. III. 3-oxo-5β-steroid-Δ1-dehydrogenase and 3-oxo-5β-steroid-Δ4-dehydrogenase, Biochim. Biophys. Acta 248:482–488.CrossRefGoogle Scholar
  8. Bader, J., and Simon, H., 1983, ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes, FEMS Microbiol. Lett. 20:171–175.CrossRefGoogle Scholar
  9. Bader, J., Günther, H., Rambeck, B., and Simon, H., 1978, Properties of two Clostridia strains acting as catalysts for the preparative stereospecific hydrogenation of 2-enoic acids and 2 alken-1-ols with hydrogen gas, Hoppe-Seyler’s Z. Physiol. Chem. 359:19–27.PubMedGoogle Scholar
  10. Bader, J., Rauschenbach, P., and Simon, H., 1982, On a hitherto unknown fermentation path of several amino acids by proteolytic Clostridia, FEBS Lett. 140:67–72.PubMedCrossRefGoogle Scholar
  11. Barker, H. A., 1985, β-Methylaspartate-glutamate mutase from Clostridium tetanomorphum, Methods Enzymol. 113:121–132.PubMedCrossRefGoogle Scholar
  12. Barker, H. A., D’Ari, L., and Kahn, J., 1987, Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum, J. Biol. Chem. 262:8994–9003.PubMedGoogle Scholar
  13. Barnes, P. J., Bilton, R. F., Mason, A. N., Fernandez, F., and Hill, M.J., 1975, The coupling of anaerobic steroid dehydrogenation to nitrate reduction in Pseudomonas NCIB 10590 and Clostridium paraputrificum, Biochem. Soc. Trans. 3:299–300.PubMedGoogle Scholar
  14. Belan, A., Boite, J., Fauve, A., Gourcy, J. G., and Veschambre, H., 1987, Use of biological systems for the preparation of chiral molecules. 3. An application in pheromone synthesis: Preparation of sulcatol enantiomers, J. Org. Chem. 52:256–260.CrossRefGoogle Scholar
  15. Berndt, A., and Schlegel, H. G., 1975, Kinetics and properties of β keto-thiolase from Clostridium pasteurianum, Arch. Microbiol. 10:21–30.CrossRefGoogle Scholar
  16. Berry, D. F., Francis, A. J., and Bollag, J-M., 1987, Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions, Microbiol. Rev. 51:43–59.PubMedGoogle Scholar
  17. Blanchard, K. C., and MacDonald, J., 1935, Bacterial metabolism. 1. The reduction of pro-pionaldehyde and of propionic acid by Clostridium acetobutylicum, J. Biol. Chem. 110:145–150.Google Scholar
  18. Bokkenheuser, V. D., and Winter, J., 1983, Biotransformation of steroids, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), Academic Press, New York, pp. 215–239.CrossRefGoogle Scholar
  19. Bokkenheuser, V. D., Winter, J., Dehazya, P., DeLeon, O., and Kelly, W. G., 1976, Formation and metabolism of tetrahydrodeoxycorticosterone by human fecal flora, J. Steroid Biochem. 7:837–843.PubMedCrossRefGoogle Scholar
  20. Bokkenheuser, V. D., Winter, J., Cohen, B. I., O’Rourke, S. O., and Mosbach, E. H., 1983, Inactivation of contraceptive steroid hormones by human intestinal Clostridia, J. Clin. Microbiol. 18:500–504.PubMedGoogle Scholar
  21. Bokkenheuser, V. D., Morris, G. N., Ritchie, A. E., Holdeman, L. V., and Winter, J., 1984, Biosynthesis of androgen from Cortisol by a species of Clostridium recovered from human fecal flora, J. Infect. Dis. 149:489–494.PubMedCrossRefGoogle Scholar
  22. Bokkenheuser, V. D., Winter, J., Morris, G. N. and Locascio, S., 1986, Steroid desmolase synthesis by Eubacterium desmolans and Clostridium cadaveris, Appl. Env. Microbiol. 52:1153–1156.Google Scholar
  23. Bostmembrun-Desrut, M., Kergomard, A., Renard, M. F., and Veschambre, H., 1983, Microbiological reduction of cyclohexenones by growing Clostridium cells, Agric. Biol. Chem. 47:1997–2000.CrossRefGoogle Scholar
  24. Brot, N., and Weissbach, H., 1970, Conversion of L-tyrosine to phenol (Clostridium tetanomorphum), Methods Enzymol. 17A:642–645.CrossRefGoogle Scholar
  25. Buckel, W. C., 1980, The reversible dehydration of (R)-2-hydroxyglutarate to (E)glutaconate, Eur. J. Biochem. 106:439–447.PubMedCrossRefGoogle Scholar
  26. Bühler, M., Giesel, H., Tischer, W., and Simon, H., 1980, Occurrence and the possible physiological role of 2-enoate reductases. FEBS Lett. 109:244–246.PubMedCrossRefGoogle Scholar
  27. Cameron, D. C., and Cooney, C. L., 1986, A novel fermentation: the production of R(—)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum, Biotechnology 4:651–654.CrossRefGoogle Scholar
  28. Campbell, L. L., 1957, Reductive degradation of pyrimidines, J. Bacteriol. 73:220–224.PubMedGoogle Scholar
  29. Chirpich, T. P., and Barker, H. A., 1971, Lysine-2,3-aminomutase (Clostridium), Methods Enzymol. 17B:215–222.CrossRefGoogle Scholar
  30. Cozzani, I., Barsacchi, R., Dibenedetto, G., Saracchi, L., and Falcone, G., 1975, Regulation of breakdown and synthesis of L-glutamate decarboxylase in Clostridium perfringens, J. Bacteriol. 123:1115–1123.PubMedGoogle Scholar
  31. Daldal, F., and Applebaum, J., 1985, Cloning and expression of Clostridium pasteurianum galactokinase gene in Escherichia coli K-12 and nucleotide sequence analyses of a region affecting the amount of the enzyme. J. Mol. Biol. 186:533–546.PubMedCrossRefGoogle Scholar
  32. D’Ari, L., and Barker, H. A., 1985, pCresol formation by cell-free extracts of Clostridium difficile, Arch. Microbiol. 143:311–312.PubMedCrossRefGoogle Scholar
  33. Datta, R., and Zeikus, J. G., 1985, Modulation of acetone-butanol-ethanol fermentation by carbon monoxide and organic acids, Appl. Env. Microbiol. 49:522–529.Google Scholar
  34. Decker, K., and Hamm, H. H., 1980, A convenient biosynthetic method for the preparation of radioactive flavin nucleotides using Clostridium kluyveri, Methods Enzymol. 66E:227–235.PubMedCrossRefGoogle Scholar
  35. Dilworth, G. L., 1983, Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri, Arch. Biochem. Biophys. 221:565–569.PubMedCrossRefGoogle Scholar
  36. Dürre, P., and Andreesen, J. R., 1983, Purine and glycine metabolism by purinolytic Clostridia, J. Bacteriol. 154:192–199.PubMedGoogle Scholar
  37. Edenharder, R., and Deser, H. J., 1981, The significance of the bacterial steroid degradation for the etiology of large bowel cancer. VIII. Transformation of cholic, chenodeoxycholic and deoxycholic acid by lecithinase-negative Clostridia. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. Reihe B 174:91–104.Google Scholar
  38. Edenharder, R., and Knaflic, T., 1981, Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-negative Clostridia. J. Lipid Res. 22:652–658.PubMedGoogle Scholar
  39. Edenharder, R., and Schneider, J., 1985, 12β-Dehydrogenation of bile acids by Clostridium paraputrificum, Clostridium tertium, and Clostridium difficile and epimerization of carbon-12 of deoxycholic acid by co-cultivation with 12α-dehydrogenating Eubacterium lentum, Appl. Env. Microbiol. 49:964–968.Google Scholar
  40. Edwards, D. I., Knox, R. J., Skolimowski, I. M., and Knight, R. C., 1982, Mode of action of nitroimidazoles, Eur. J. Chemother. Antibiot. 2:65–72.Google Scholar
  41. Egerer, P., and Simon, H., 1982, Hydrogenation with entrapped Clostridium spec. LAI and observations on its stability, Biotechnol. Lett. 4:501–506.CrossRefGoogle Scholar
  42. Evans, W. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments, Nature 270:17–22.PubMedCrossRefGoogle Scholar
  43. Fernandez, V. M., 1983, An electrochemical cell for reduction of biochemicals: its application to the study of the effect of pH and redox potential on the activity of hydrogenases. Anal. Biochem. 130:54–59.PubMedCrossRefGoogle Scholar
  44. Ferrari, A., Scolastinco, C., and Beretta, L., 1977, On the mechanism of cholic acid 7α-dehydroxylation by a Clostridium bifermentans cell-free extract, FEBS Lett. 75:166–168.PubMedCrossRefGoogle Scholar
  45. Forsberg, C. W., 1987, Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species, Appl. Env. Microbiol. 53:639–643.Google Scholar
  46. Francis, A. J., and Dodge, C. J., 1988, Anaerobic microbial dissolution of transition and heavy metal oxides, Appl. Env. Microbiol. 54:1009–1014.Google Scholar
  47. Giesel, H., and Simon, H., 1983, On the occurrence of enoate reductase and 2-oxo-carboxy-late reductase in Clostridia, and some observations on the amino acid fermentation by Peptostreptococcus anaerobius, Arch. Microbiol. 135:51–57.PubMedCrossRefGoogle Scholar
  48. Goddard, P., Fernandez, F., West, B., Hill, M. J., and Barnes, P., 1975, The nuclear de-hydrogenation of steroids by intestinal bacteria, J. Med. Microbiol. 8:429–435.PubMedCrossRefGoogle Scholar
  49. Gottschalk, G., and Bender, R., 1982, D-Gluconate dehydratase from Clostridiumpasteurianum, Methods Enzymol. 90:283–287.PubMedCrossRefGoogle Scholar
  50. Graves, M. C., Mullenbach, G. T., and Rabinowitz, J. C., 1985, Cloning and nucleotide sequence determination of the Clostridium pasteurianum ferredoxin gene, Proc. Natl. Acad. Sci. USA 82:1653–1657.PubMedCrossRefGoogle Scholar
  51. Hardman, J. K., 1962, γ-Hydroxybutyrate dehydrogenase from Clostridium aminobutyricum, Methods Enzymol. 5:778–783.CrossRefGoogle Scholar
  52. Harnick, M., Aharonowitz, Y., Lamed, R., and Kashman, Y., 1983, Tetra- and hexa- hydro derivatives of aldosterone and 18-hydroxycortico-sterone by chemical and microbial reductions, Steroid Biochem. 19:1441–1450.CrossRefGoogle Scholar
  53. Harris, J. N., and Hylemon, P. B., 1978, Partial purification and characterization of NADP-dependent 12α-hydroxysteroid dehydrogenase from Clostridium Upturn, Biochim. Biophys. Acta 528:148–157.PubMedCrossRefGoogle Scholar
  54. Harrison, G., Curie, C., and Laishley, E. J., 1984, Purification and characterisation of an inducible dissimilatory type sulfite reductase from Clostridium pasteurianum, Arch. Microbiol. 138:72–78.PubMedCrossRefGoogle Scholar
  55. Hartmanis, M. G. N., 1987, Butyrate kinase from Clostridium acetobutylicum, J. Biol. Chem. 262:617–621.PubMedGoogle Scholar
  56. Hartmanis, M. G. N., and Stadtman, T. C., 1986, Diol metabolism and diol dehydratase in Clostridium glycolicum, Arch. Biochem. Biophys. 245:144–152.PubMedCrossRefGoogle Scholar
  57. Hartrampf, G., and Buckel, W., 1984, The stereochemistry of the formation of the methyl group in the glutamate mutase-catalyzed reaction in Clostridium tetanomorphum, FEBS Lett. 171:73–78.PubMedCrossRefGoogle Scholar
  58. Hartrampf, G., and Buckel, W., 1986, On the steric course of the adenosylcobalamin-dependent 2-methyleneglutarate mutase reaction in Clostridium barkeri, Eur. J. Biochem. 156:301–304.PubMedCrossRefGoogle Scholar
  59. Hayakawa, S., and Hattori, T., 1970, 7α-Dehydroxylation of cholic acid by Clostridium bifermentans strain ATCC 9714 and Clostridium sordellii strain NCIB 2629, FEBS Lett. 6:131–133.PubMedCrossRefGoogle Scholar
  60. Heritage, A. D., and MacRae, I. C, 1977, Identification of intermediates formed during the degradation of hexachlorocyclohexanes by Clostridium sphenoides, Appl. Env. Microbiol. 33:1295–1297.Google Scholar
  61. Hirano, S., Masuda, N., Oda, H., and Mukai, H., 1981, Transformation of bile acids by Clostridium perfringens, Appl. Env. Microbiol. 42:394–399.Google Scholar
  62. Holcenberg, J. S., and Stadtman, E. R., 1969, Nicotinic acid metabolism. III. Purification and properties of a nicotinic acid hydroxylase, J. Biol. Chem. 244:1194–1203.PubMedGoogle Scholar
  63. Hsiang, M. W., and Bright, H. J., 1969, β-Methylaspartase from Clostridium tetanomorphum. Meth. Enzymol. 13:347–353.CrossRefGoogle Scholar
  64. Huijghebaert, S. M., and Eyssen, H. J., 1982, Specificity of the bile salt sulphatase from Clostridium S1, Appl. Env. Microbiol. 44:1030–1034.Google Scholar
  65. Hunninghake, D., and Grisolia, S., 1967, Uracil and thymine reductases, Methods Enzymol. 12A:50–59.CrossRefGoogle Scholar
  66. Hylemon, P. B., and Glass, T. L., 1983, Biotransformation of bile acids and cholesterol by the intestinal microflora, in: Human Intestinal Microflora in Health and Disease (D. J. Hentges, ed.), Academic Press, New York, pp. 189–213.CrossRefGoogle Scholar
  67. Imhoff, D., and Andreesen, J. R., 1979, Nicotinic acid hydroxylase from Clostridium barkerii: Selenium-dependent formation of active enzyme, FEMS Microbiol. Lett. 5:155–158.CrossRefGoogle Scholar
  68. Ishii, K., Kudo, T., Honda, H., and Horikoshi, K., 1983, Molecular cloning of β-isopropylma-late dehydrogenase gene from Clostridium butyricum M588, Agric. Biol. Chem. (Tokyo) 47:2313–2318.CrossRefGoogle Scholar
  69. Jagnow, G., Haider, K., and Ellwardt, P. C., 1977, Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultatively anaerobic bacteria, Arch. Microbiol. 115:285–292.PubMedCrossRefGoogle Scholar
  70. Jeng, I. M., and Barker, H. A., 1974, Purification and properties of a L-3-aminobutyryl CoA deaminase from a lysine-fermenting Clostridium, J. Biol. Chem. 249:6578–6584.PubMedGoogle Scholar
  71. Jeng, I. M., Somack, R., and Barker, H. A., 1974, Ornithine degradation in Clostridium sticklandii: Pyridoxal phosphate and coenzyme A-dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl CoA, Biochemistry 13:2898–2903.PubMedCrossRefGoogle Scholar
  72. Jewell, J. B., Coutinho, J. B., and Kropinski, A. W., 1986, Bioconversion of propionic, valeric and 4-hydroxybutyric acids into the corresponding alcohols by Clostridium acetobutylicum NRRL 527, Curr. Microbiol. 13:215–220.CrossRefGoogle Scholar
  73. Kaplan, B. H., and Stadtman, E. R., 1971, Ethanolamine deaminase (Clostridium sp.), Methods Enzymol. 17:818–824.CrossRefGoogle Scholar
  74. Kaplan, F., Setlow, P., and Kaplan, N. O., 1969, Purification and properties of a DPNH-TPNH diaphorase from Clostridium kluyveri, Arch. Biochem. Biophys. 132:91–98.PubMedCrossRefGoogle Scholar
  75. Karube, I., Matsunaga, T., Tsuru, S., and Suzuki, S., 1977, Biochemical fuel cell utilising immobilised cells of Clostridium butyricum, Biotechnol. Bioeng. 19:1727–1733.CrossRefGoogle Scholar
  76. Karube, I., Urano, N., Matsunaga, T., and Suzuki, S., 1982, Hydrogen production from glucose by immobilised growing cells of Clostridium butyricum, Eur. J. Appl. Microbiol. Biotechnol. 16:5–9.CrossRefGoogle Scholar
  77. Karube, I., Urano, N., Yamada, T., Hirochika, H., and Sakaguchi, K., 1983, Cloning and expression of the hydrogenase gene from Clostridium butyricum in Escherichia coli, FEBS Lett. 158:119–122.PubMedCrossRefGoogle Scholar
  78. Klier, K., Kresze, G., Werbitsky, O., and Simon, H., 1987, The microbial reductive splitting of the N-O bond of dihydrooxazines; an alternative to the chemical reduction, Tetrahedron Lett. 28:2677–2680.CrossRefGoogle Scholar
  79. Klotzsch, H. R., 1969, Phosphotransacetylase from Clostridium kluyveri, Methods Enzymol. 13:381–386.CrossRefGoogle Scholar
  80. Knowles, J., Lehtovaara, P., and Teeri, T., 1987, Cellulase families and their genes, Trends Biotechnol. 5:255–261.CrossRefGoogle Scholar
  81. Kole, M. M., and Altosaar, I., 1985, Conversion of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium absonum in culture and by immobilized cells, FEMS Microbiol. Lett. 28:69–72.CrossRefGoogle Scholar
  82. Krafft, A. E., Winter, J., Bokkenheuser, V. D., and Hylemon, P. B., 1987, Cofactor requirements of steroid-17–20-desmolase and 20α-hydroxysteroid dehydrogenase activities in cell extracts of Clostridium scindens, J. Steroid Biochem. 28:49–54.PubMedCrossRefGoogle Scholar
  83. Kreis, W., and Hession, C, 1973, Isolation and purification of L-methionine-α-deamino-γ-mercaptomethane lyase (L-methioninase) from Clostridium sporogenes, Cancer Res. 33:1862–1865.PubMedGoogle Scholar
  84. Krumholtz, L. R., and Bryant, M. P., 1985, Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate, Int. J. Syst. Bacteriol. 35:454–456.CrossRefGoogle Scholar
  85. Kuchta, R. D., and Abeles, R. H., 1985, Lactate reduction in Clostridium propionicum. Purification and properties of lactylCoA dehydratase, J. Biol. Chem. 260:13181–13189.PubMedGoogle Scholar
  86. Lamed, R., Keinan, E., and Zeikus, J. G., 1981, Potential applications of an alcohol/ketone oxidoreductase from thermophilic bacteria, Enz. Microb. Technol. 3:144–148.CrossRefGoogle Scholar
  87. Lebertz, H., Simon, H., Courtney, L. F., Benkovic, S. J., Zydowsky, L. D., Lee, K., and Floss, H. G., 1987, Stereochemistry of acetic acid formation from 5-methyltetrahydrofolate by Clostridium thermoaceticum, J. Am. Chem. Soc. 109:3173–3174.CrossRefGoogle Scholar
  88. Lieberman, I., and Barker, H. A., 1955, Amino acid acetylase of Clostridium kluyveri, Methods Enzymol. 1:616–619.CrossRefGoogle Scholar
  89. Liu, C-L., and Mortenson, L. E., 1984, Formate dehydrogenase of Clostridium pasteurianum, J. Bacteriol. 159:375–380.PubMedGoogle Scholar
  90. Ljungdahl, L. G., and Andreesen, J. R., 1978, Formate dehydrogenase, a selenium-tungsten enzyme from Clostridium thermoaceticum, Methods Enzymol. 53:360–372.PubMedCrossRefGoogle Scholar
  91. Lovitt, R. W., Kell, D. B., and Morris, J. G., 1986a, Proline reduction by Clostridium sporogenes is coupled to vectorial proton ejection, FEMS Microbiol. Lett. 36:269–273.CrossRefGoogle Scholar
  92. Lovitt, R. W., Walter, R. P., Morris, J. G., and Kell, D. B., 1986b, Conductimetric assessment of the biomass content is suspensions of immobilised (gel-entrapped) microorganisms. Appl. Microbiol. Biotechnol. 23:168–173.CrossRefGoogle Scholar
  93. Lovitt, R. W., James, E. W., Kell, D. B., and Morris, J. G., 1987a, Bioelectrochemical transformations catalyzed by Clostridium sporogenes, in: Bioreactors and Biotransformations (G. W. Moody and P. B. Baker, ed.), Elsevier, Amsterdam, pp. 263–278.Google Scholar
  94. Lovitt, R. W., Morris, J. G., and Kell, D. B., 1987b, The growth and nutrition of Clostridium sporogenes NCIB 8053 in defined media, J. Appl Bacteriol. 62:71–80.PubMedCrossRefGoogle Scholar
  95. Macdonald, I. A., and Hill, M. J., 1978, The inability of nuclear dehydrogenating Clostridia to oxidise bile salt hydroxyl groups, Experientia 35:722–723.CrossRefGoogle Scholar
  96. Macdonald, I. A., and Roach, P. B., 1981, Bile salt induction of 7α- and 7β-hydroxysteroid dehydrogenases in Clostridium absonum, Biochim. Biophys. Acta 665:262–269.PubMedCrossRefGoogle Scholar
  97. Macdonald, I. A., and Sutherland, J. D., 1983, Further studies on the bile salt induction of 7α-and 7β-hydroxysteroid dehydrogenases in Clostridium absonum, Biochim. Biophys. Acta 750:397–403.PubMedCrossRefGoogle Scholar
  98. Macdonald, I. A., Meier, E. C., Mahony, D. E., and Costain, G. A., 1976, 3α-, 7α-, and 12α-hydroxysteroid dehydrogenase activities from Clostridium perfringens, Biochim. Biophys. Acta 450:142–153.PubMedCrossRefGoogle Scholar
  99. Macdonald, I. A., Jellet, J. F., and Mahony, D. E., 1979, 12α-hydroxy-steroid dehydrogenase from Clostridium group P, strain C48–50 ATCC 29733; partial purification and characterization, J. Lipid Res. 20:234–239.PubMedGoogle Scholar
  100. Macdonald, I. A., Hutchison, D. M., Forrest, T. P., Bokkenheuser, V. D., Winter, J., and Holdeman, L. V., 1983a, Metabolism of primary bile acids by Clostridium perfringens, J. Steroid Biochem. 18:97–104.PubMedCrossRefGoogle Scholar
  101. Macdonald, I. A., White, B. A., and Hylemon, P. B., 1983b, Separation of 7α- and 7β-hydroxysteroid dehydrogenase activities from Clostridium absonum ATCC 27555 and cellular responses of this organism to bile acid inducers, J. Lipid Res. 24:1119–1126.PubMedGoogle Scholar
  102. Macdonald, I. A., Williams, C. N., Sutherland, J. D., and MacDonald, A. C., 1983c, Estimation of ursodeoxycholic acid in human and bear biles using Clostridium absonum 7β-hy-droxysteroid dehydrogenase, Anal. Biochem. 135:349–354.PubMedCrossRefGoogle Scholar
  103. Machacek-Pitsch, C., Rauschenbach, P., and Simon, H., 1985, Observations on the elimination of water from 2-hydroxy-acids in the metabolism of amino acids by Clostridium sporogenes, Biol. Chem. Hoppe-Seyler 366:1057–1062.PubMedCrossRefGoogle Scholar
  104. Mahony, D. E., Mier, C. E., Macdonald, I. A. and Holdeman, L. V., 1977, Bile salt degradation by nonfermentative Clostridia. Appl. Env. Microbiol. 34:419–423.Google Scholar
  105. Masuda, N., 1981, Deconjugation of bile salts by Bacteroides and Clostridium, Microbiol. Immunol. 25:1–11.PubMedGoogle Scholar
  106. Matsunaga, T., Matsunaga, N., and Nishimura, S., 1985, Regeneration of NAD(P)H by immobilised whole cells of Clostridium butyricum under hydrogen high pressure, Biotechnol. Bioeng. 27:1277–1281.PubMedCrossRefGoogle Scholar
  107. Meyer, C. L., Roos, J. W. and Papoutsakis, E. T., 1986, Carbon monoxide gassing leads to alcohol production and butyrate uptake without acetone formation in continuous cultures of Clostridium acetobutylicum, Appl. Microbiol. Biotechnol. 24:159–167.Google Scholar
  108. Möller, B., Hippe, H., and Gottschalk, G., 1986, Degradation of various amine compounds by mesophilic Clostridia, Arch. Microbiol. 145:85–90.PubMedCrossRefGoogle Scholar
  109. Monticello, D. J., Hadioetomo, R. S., and Costilow, R. N., 1984, Isoleucine synthesis by Clostridium sporogenes from propionate or α-methylbutyrate, J. Gen. Microbiol. 130:309–318.PubMedGoogle Scholar
  110. Morris, G. N., Winter, J., Cato, E. P., Ritchie, A. E., and Bokkenheuser, V. D., 1985, Clostridium scindens sp. nov., a human intestinal bacterium with a desmolytic activity on corticoids, Int. J. Syst. Bacteriol. 35:478–481.CrossRefGoogle Scholar
  111. Nair, P. P., Gordon, M., Gordon, S., Reback, J., and Mendeloff, A. I., 1965, The cleavage of bile acid conjugates by cell-free extracts from Clostridium perfringens, Life Sci. 4:1887–1892.PubMedCrossRefGoogle Scholar
  112. Najjar, V. A., 1957, Determination of amino acids by specific bacterial decarboxylases in the Warburg apparatus. Methods Enzymol. 3:462–466.CrossRefGoogle Scholar
  113. O’Brien, R. W., and Morris, J. G., 1971, The ferredoxin-dependent reduction of chloramphenicol by Clostridium acetobutylicum, J. Gen. Microbiol. 67:265–271.PubMedCrossRefGoogle Scholar
  114. O’Brien, R. W., and Morris, J. G., 1972, Effect of metronidazole on hydrogen production by Clostridium acetobutylicum, Arch. Microbiol. 84:225–233.Google Scholar
  115. Ohisa, N., Yamaguchi, M., and Kurihara, N., 1980, Lindane degradation by cell-free extracts of Clostridium rectum, Arch. Microbiol. 125:221–225.PubMedCrossRefGoogle Scholar
  116. Owen, R. W., 1985, Biotransformation of bile acids by Clostridia, J. Med. Microbiol. 20:233–238.PubMedCrossRefGoogle Scholar
  117. Paulin, L., and Pösö, H., 1983, Ornithine decarboxylase activity from an extremely thermophilic bacterium, Clostridium thermohydrosulfuricum. Effect of GTP analogues on enzyme activity, Biochim. Biophys. Acta 742:197–205.PubMedCrossRefGoogle Scholar
  118. Pezacka, E., and Wood, H. G., 1984, The synthesis of acetylCoA by Clostridium thermoaceticum from CO2, H2, CoA and methyltetrahydrofolate, Arch. Microbiol. 137:63–69.PubMedCrossRefGoogle Scholar
  119. Pitsch, C., and Simon, H., 1982, The stereochemical course of the water elimination from (2R)-phenyllactate in the amino acid fermentation of Clostridium sporogenes, Hoppe Seyler’s Z. Physiol. Chem. 363:1253–1257.PubMedCrossRefGoogle Scholar
  120. Pons, J-L., Rimbault, A., Darbord, J-C., and Leluan, G., 1984, Biosynthesis of toluene by Clostridium aerofoetidum strain WS, Ann. Microbiol. 135B:219–222.Google Scholar
  121. Poston, J. M., 1976, Leucine, 2,3-aminomutase, an enzyme of leucine catabolism, J. Biol. Chem. 251:1859–1863.PubMedGoogle Scholar
  122. Rakosky, J., Zimmerman, L. N., and Beck, J. V., 1955, Guanine degradation by Clostridium acidiurici. II. Isolation and characterization of guanase, J. Bacteriol. 69:566–570.PubMedGoogle Scholar
  123. Rao, G., and Mutharasan, R., 1987, Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes, Appl. Env. Microbiol. 53:1232–1235.Google Scholar
  124. Rice, D. W., Hornby, D. P., and Engel, P. C., 1985, Crystallisation of a NAD-dependent glutamate dehydrogenase from Clostridium symbiosum, J. Mol. Biol. 181:147–149.PubMedCrossRefGoogle Scholar
  125. Robben, J., Parmentier, G., and Eyssen, H., 1986, Isolation of a rat intestinal Clostridium strain producing 5α- and 5β-bile salt, 3α-sulfatase activity, Appl. Env. Microbiol. 51:32–38.Google Scholar
  126. Sacks, L. E., 1985, Increased formation of arginine deiminase by Clostridium perfringens FD-1 growing in the presence of caffeine, Experientia 41:1435–1436.PubMedCrossRefGoogle Scholar
  127. Sacquet, E. C., Raibard, P. M., Mejean, C., Riottot, M. J., Leprince, C., and Leglise, P. C., 1979, Bacterial formation of ω-muricholic acid in rats, Appl. Env. Microbiol. 37:1127–1131.Google Scholar
  128. Sanchez-Riéra, F., Cameron, D. C., and Cooney, C. L., 1987, Influence of environmental factors in the production of R(—)-1,2,propanediol by Clostridium thermosaccharolyticum, Biotechnol. Lett. 9:449–454.CrossRefGoogle Scholar
  129. Schink, B., 1986, Environmental aspects of the degradation potential of anaerobic bacteria, in: Biology of Anaerobic Bacteria (H. C. Dubourguier et al., ed.), Elsevier, Amsterdam, pp. 2–15.Google Scholar
  130. Scott, T. A., Bellion, E., and Matley, M., 1969, The conversion of N-formyl-L-aspartate into nicotinic acid by extracts of Clostridium acetobutylicum, Eur. J. Biochem. 10:318–323.PubMedCrossRefGoogle Scholar
  131. Sedlmaier, H., and Simon, H., 1985, Purification and some properties of an acryloylCoA reductase of Clostridium kluyveri, Biol. Chem. Hoppe-Seyler 366:953–962.CrossRefGoogle Scholar
  132. Seki, S., Hattori, Y., Hasegawa, T., Haraguchi, H., and Ishimoto, M., 1987, Studies on nitrate reductase of Clostridium perfringens. IV. Identification of metals, molybdenum cofactor and iron-sulfur cluster, J. Biochem. (Tokyo) 101:503–510.PubMedGoogle Scholar
  133. Sekiguchi, S., Seki, S., and Ishimoto, M., 1983, Purification and some properties of nitrite reductase from Clostridium perfringens, J. Biochem. (Tokyo) 94:1053–1059.PubMedGoogle Scholar
  134. Seto, B., 1980, The Stickland reaction, in: Diversity of Bacterial Respiratory Systems, Vol. 2 (C.J. Knowles, ed.), CRC, Boca Raton, pp. 50–64.Google Scholar
  135. Seto, B., and Stadtman, T. C., 1976, Purification and properties of proline reductase from Clostridium sticklandii, J. Biol. Chem. 251:2435–2439.PubMedGoogle Scholar
  136. Shimoi, H., Nagata, S., Esaki, N., Tanaka, H., and Soda, K., 1987, Leucine dehydrogenase of a thermophilic anaerobe, Clostridium thermoaceticum: Gene cloning, purification and characterisation, Agric. Biol. Chem. Tokyo 51:3375–3382.CrossRefGoogle Scholar
  137. Sih, C. J., and Chen, C-S., 1984, Microbial asymmetric catalysis-enantioselective reduction of ketones, Angew. Chem. Int. Ed. Engl. 23:570–578.CrossRefGoogle Scholar
  138. Simon, H., and Günther, H., 1983, Chiral synthons by biohydrogenation or electroenzymatic reductions, in: Biomimetic Chemistry (Z. Yoshida and N. Ise, eds.), Elsevier, Amsterdam, pp. 207–227.Google Scholar
  139. Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J., 1984, Biohydrogenation and electromicrobial and electroenzymatic reduction methods for the preparation of chiral compounds, Ann. N.Y. Acad. Sci. 434:171–185.CrossRefGoogle Scholar
  140. Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J., 1985, Chiral compounds synthesised by biocatalytic reductions, Angew. Chem. Int. Ed. Engl. 24:539–555.CrossRefGoogle Scholar
  141. Sinskey, A. J., Akedo, M., and Cooney, C. L., 1981, Acrylate fermentations, in: Trends in the Biology of Fermentations for Fuels and Chemicals, (A. Hollaender et al., eds.), Plenum Press, New York, pp. 473–492.CrossRefGoogle Scholar
  142. Sleat, R., and Robinson, J. P., 1984, The bacteriology of anaerobic degradation of aromatic compounds, J. Appl. Bacteriol. 57:381–394.PubMedCrossRefGoogle Scholar
  143. Sliwkowski, M. X., and Hartmanis, M. G. N., 1984, Simultaneous single step purification of thiolase and NADP-dependent 3-hydroxybutyrylCoA dehydrogenase from Clostridium kluyveri, Anal. Biochem. 141:344–347.PubMedCrossRefGoogle Scholar
  144. Stadtman, T. C., and Grant, M. A., 1971, Lβ-Lysine mutase (Clostridium sticklandii). Dα-Lysine mutase (Clostridium), Methods Enzymol. 17B:206–215.CrossRefGoogle Scholar
  145. Stellwag, E. J., and Hylemon, P. B., 1979, 7α-Dehydroxylation of cholic acid and chenodeoxy-cholic acid by Clostridium Upturn, J. Lipid Res. 20:325–333.PubMedGoogle Scholar
  146. Stieb, M., and Schink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming obligately syntrophic bacterium, Arch. Microbiol. 140:387–390.CrossRefGoogle Scholar
  147. Stöcklein, W., and Schmidt, H-L., 1985, Evidence for L-threonine cleavage and allothreonine formation by different enzymes from Clostridium pasteurianum: Threonine aldolase and serine hydroxymethyl transferase, Biochem. J. 232:621–622.PubMedGoogle Scholar
  148. Stokes, N. A., and Hylemon, P. B., 1985, Characterization of Δ4–3-ketosteroid-5β-reductase and 3β-hydroxysteroid dehydrogenase in cell extracts of Clostridium innocuum, Biochim. Biophys. Acta 836:255–261.PubMedCrossRefGoogle Scholar
  149. Sutherland, J. D., and Macdonald, I. A., 1982, The metabolism of primary, 7-oxo- and 7β-hydroxy bile acids by Clostridium absonum, J. Lipid Res. 23:726–732.PubMedGoogle Scholar
  150. Sutherland, J. D., and Williams, C. N., 1985, Bile acid induction of 7α- and 7β-hydroxysteroid dehydrogenases in Clostridium limosum, J. Lipid Res. 26:344–350.PubMedGoogle Scholar
  151. Sutherland, J. D., Williams, C. N., Hutchison, D. M., and Holdeman, L. V., 1987, Oxidation of primary bile acids by 7α-hydroxysteroid dehydrogenase-elaborating Clostridium bifermentans soil isolate, Can. J. Microbiol. 33:663–669.PubMedCrossRefGoogle Scholar
  152. Szulmajster, J., 1958, Bacterial degradation of creatinine. II. Creatinine desimidase, Biochim. Biophys. Acta 30:154–163.PubMedCrossRefGoogle Scholar
  153. Tanaka, H., and Stadtman, T. C., 1979, Selenium-dependent clostridial glycine reductase; purification and characterization of the two membrane-associated protein components, J. Biol. Chem. 254:447–452.PubMedGoogle Scholar
  154. Taya, M., Yagi, Y., and Kobayashi, T., 1986, Production of acetone and butanol using immobilised growing cells of Clostridium acetobutylicum, Agric. Biol. Chem. Tokyo 50:2141–2142.CrossRefGoogle Scholar
  155. Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  156. Tran, N. D., Romette, J. L., and Thomas, D., 1983, An enzyme electrode for specific determination of L-lysine: A real-time control sensor, Biotechnol. Bioeng. 25:329–340.PubMedCrossRefGoogle Scholar
  157. Tran-Din, K., and Gottschalk, G., 1985, Formation of D(—)1,2 propanediol and D(—)lactate from glucose by Clostridium sphenoides under phosphate limitation, Arch. Microbiol. 142:87–92.CrossRefGoogle Scholar
  158. Tsai, L., Pastan, I., and Stadtman, E. R., 1966, Nicotinic acid metabolism II. The isolation and characterisation of intermediates in the fermentation of nicotinic acid, J. Biol. Chem. 241:1807–1813.PubMedGoogle Scholar
  159. Usdin, K. P., Zappe, H., Jones, D. T., and Woods, D. R., 1986, Cloning, expression and purification of glutamine synthetase from Clostridium acetobutylicum, Appl. Env. Microbiol. 52:413–419.Google Scholar
  160. Verhulst, A., Semjen, G., Meerts, U., Janssen, G., Parmentier, G., Asselberghs, S., van Hespen, H., and Eyssen, H., 1985, Biohydrogenation of linoleic acid by Clostridium sporogenes, Clostridium bifermentans, Clostridium sordelli and Bacteroides sp., FEMS Microb. Ecol. 31:255–259.CrossRefGoogle Scholar
  161. Verma, J. N., and Goldfine, H., 1985, Phosphatidylserine decarboxylase from Clostridium butyricum, J. Lipid Res. 26:610–616.PubMedGoogle Scholar
  162. Wagner, R., Cammack, R., and Andreesen, J. R., 1984, Purification and characterisation of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium. Biochim. Biophys. Acta 791:63–74.CrossRefGoogle Scholar
  163. Waterson, R. M., and Conway, R. S., 1981, EnoylCoA hydratases from Clostridium acetobutylicum and Escherichia coli, Methods Enzymol. 71:421–430.PubMedCrossRefGoogle Scholar
  164. Westheimer, F. H., 1969, Acetoacetate decarboxylase from Clostridium acetobutylicum, Methods Enzymol. 14:231–241.CrossRefGoogle Scholar
  165. White, H., Lebertz, H., Thanos, I., and Simon, H., 1987, Clostridium thermoaceticum forms methanol from carbon monoxide in the presence of viologen dyes, FEMS Microbiol. Lett. 43:173–176.CrossRefGoogle Scholar
  166. Whitehead, T. R., and Rabinowitz, J. C., 1986, Cloning and expression in Escherichia coli of the gene for 10-formyltetrahydrofolate synthetase from Clostridium acidiurici, J. Bacteriol. 167:205–209.PubMedGoogle Scholar
  167. Wildenauer, F. X., and Winter, J., 1986, Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes, FEMS Microbiol. Ecol. 38:373–379.CrossRefGoogle Scholar
  168. Young, L. Y., 1984, Anaerobic degradation of aromatic compounds, in: Microbial Degradation of Organic Compounds (D. T. Gibson, ed.), Marcel Dekker, New York, pp. 487–523.Google Scholar
  169. Youngleson, J. S., Santangelo, J. D., Jones, D. T., and Woods, D. R., 1988, Cloning and expression of a Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli, Appl. Env. Microbiol. 54:676–682.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • J. Gareth Morris
    • 1
  1. 1.Department of Biological SciencesUniversity College of WalesPenglais, Aberystwyth, DyfedWales

Personalised recommendations