Cholera pp 155-187 | Cite as

Cholera Enterotoxin (Choleragen)

A Historical Perspective
  • Richard A. Finkelstein
Part of the Current Topics in Infectious Disease book series (CTID)


Slightly over a century ago, during the period from 1883 to 1885, Robert Koch summarized his masterful studies on the etiology of cholera in a series of reports1–8 which presented the first convincing evidence that a particular distinctive microorganism, which he isolated in pure culture and called “comma-bacillus” (now known as Vibrio cholerae O group 1), was:
  1. 1.

    Consistently present during the disease (chiefly in the intestines and the dejecta of the victims)



Cholera Toxin Vibrio Cholerae Cholera Vibrio Cholera Enterotoxin Rabbit Ileal Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anonymous: Dr. Koch’s newly described cholera-organism. Brit Med J 1883 (2): 828–829, 1883.Google Scholar
  2. 2.
    Anonymous: Dr. Koch’s fifth cholera report. Brit Med J 1884 (l): 375–376, 1884.Google Scholar
  3. 3.
    Anonymous: Dr. Koch’s sixth cholera report. Brit Med J 1884 (l): 568–569, 1884.Google Scholar
  4. 4.
    Anonymous: The German Cholera Commission. Brit Med J 1884 (l): 740, 1884.Google Scholar
  5. 5.
    Anonymous: Koch on cholera. Brit Med J 1884 (2): 427–428, 1884.Google Scholar
  6. 6.
    Anonymous: Conferences in Berlin for the discussion of cholera. Brit Med J 1885(1): 1011-1012, 1885.Google Scholar
  7. 7.
    Koch R: An address on cholera and its bacillus. Brit Med J 1884 (2): 403–407, 1884.CrossRefGoogle Scholar
  8. 8.
    Koch R: Further researches on cholera. Brit Med J 1886 (l): 6–8, 62-66, 1886.CrossRefGoogle Scholar
  9. 9.
    Koch, R: Die Aetiologie der Tuberkulose. Mittheilungen aus dem Kaiserlichen Gesundheitsamte 2: 1–88, 1884.Google Scholar
  10. 10.
    Pollitzer R: Cholera. Geneva, World Health Organization, 1959.Google Scholar
  11. 11.
    van Heyningen WE, Seal JR: Cholera: The American Scientific Experience, 1947–1980. Boulder, Westview Press, 1983.Google Scholar
  12. 12.
    De SN: Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533–1534, 1959.PubMedCrossRefGoogle Scholar
  13. 13.
    De SN, Ghose ML: False reaction in ligated loop of rabbit intestine. Indian J Pathol Bacteriol 2: 121–128, 1959.Google Scholar
  14. 14.
    De SN, Chatterje DN: An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J Pathol Bacteriol 66: 559–562, 1953.PubMedCrossRefGoogle Scholar
  15. 15.
    De SN, Bhattacharya K, Sarkar JK: A study of the pathogenicity of strains of Bacterium coli from acute and chronic enteritis. J Pathol Bacteriol 71: 201–209, 1956.PubMedCrossRefGoogle Scholar
  16. 16.
    Violle H, Crendiropoulo: Note sur le cholèra experimental? C R Soc Biolog (Paris) 78: 331, 1915.Google Scholar
  17. 17.
    De SN, Ghose ML, Sen A: Activities of bacteria-free preparations from Vibrio cholerae. J Pathol Bacteriol 79: 373–380, 1960.PubMedCrossRefGoogle Scholar
  18. 18.
    De SN: Cholera: Its Pathology and Pathogène sis. London, Oliver and Boyd, 1961.Google Scholar
  19. 19.
    Dutta NK, Panse MW, Kulkarni DR: Role of cholera toxin in experimental cholera. J Bacteriol 78: 594–595, 1959.PubMedGoogle Scholar
  20. 20.
    Dutta NK, Habbu MK: Experimental cholera in infant rabbits: a method for chemotheurapeutic investigation. Brit J Pharmacol Chemother 10: 153–159, 1955.CrossRefGoogle Scholar
  21. 21.
    Mukherjee B, Bhattacharjee KK, De SN: Observations on experiments on infant rabbits with Vibrio cholerae. Indian J Med Res 57: 2205–2212, 1969.PubMedGoogle Scholar
  22. 22.
    Finkelstein RA: Experimental cholera in infant rabbits: diarrhea or diuresis? Indian J Med Res 59: 50–31, 1971.PubMedGoogle Scholar
  23. 23.
    Finkelstein RA: Nutrition of Vibrio cholerae, Ph.D. dissertation. Austin, University of Texas, Austin, 1955.Google Scholar
  24. 24.
    Finkelstein RA, Lankford CE: Nutrient requirements of Vibrio cholerae. Bacteriol Proc 1955: 49, 1955.Google Scholar
  25. 25.
    Finkelstein RA, LaBrec EH: Rapid identification of cholera vibrios with fluorescent antibody. J Bacteriol 78: 886–891, 1959.PubMedGoogle Scholar
  26. 26.
    Finkelstein RA, Gomez CZ: Comparison of methods for the rapid recognition of cholera vibrios. Bull WHO 28: 327–332, 1963.PubMedGoogle Scholar
  27. 27.
    Finkelstein RA, Ransom JP: Non-specific resistance to experimental cholera in embryonated eggs. J Exp Med 112: 315–328, 1960.PubMedCrossRefGoogle Scholar
  28. 28.
    Finkelstein RA, Ramm GM: Effect of age on susceptibility to experimental cholera in embryonated eggs. J Infect Dis 111: 239–249, 1962.CrossRefGoogle Scholar
  29. 29.
    Finkelstein RA: Vibriocidal antibody inhibition (VAI) analysis: a technique for the identification of the predominant vibriocidal antibodies in serum and for the recognition and identification of Vibrio cholerae antigens. J Immunol 89: 264–271, 1962.Google Scholar
  30. 30.
    Finkelstein RA, Mukerjee S: Hemagglutination: a rapid method for differentiating Vibrio cholerae and El Tor vibrios. Proc Soc Exp Biol Med 112: 355–359, 1963.CrossRefGoogle Scholar
  31. 31.
    Smith HW: The antimicrobial activity of the stomach contents of suckling rabbits. J Pathol Bacteriol 91: 1–9, 1966.PubMedCrossRefGoogle Scholar
  32. 32.
    Phillips RA: Cholera in the perspective of 1966. Ann Intern Med 65: 922–930, 1966.PubMedCrossRefGoogle Scholar
  33. 33.
    Basaca-Sevilla V, Pesigan TP, Finkelstein RA: Observations on serological responses to cholera immunization. Am J Trop Med Hyg 13: 100–107, 1964.PubMedGoogle Scholar
  34. 34.
    Finkelstein RA, Mukerjee S, Rudra BC: Demonstration and quantitation of antigen in cholera stool filtrates. J Infect Dis 113: 99–104, 1963.PubMedCrossRefGoogle Scholar
  35. 35.
    Formal SB, Kundel D. Schneider H, et al: Studies with Vibrio cholerae in the ligated loop of the rabbit intestine. Brit J Exp Pathol 42: 504–510, 1961.Google Scholar
  36. 36.
    Jenkin CR, Rowley D: Possible factors in the pathogenesis of cholera. Brit J Exp Pathol 40: 474–482, 1959.Google Scholar
  37. 37.
    Norris HT, Dutta NK, Finkelstein RA, et al: Morphologic alterations of the intestine of ten day old rabbits given intact and ultrasonically disrupted cholera vibrios or cholera endotoxin? Fed Proc 22: 512, 1963.Google Scholar
  38. 38.
    Finkelstein RA, Norris HT, Dutta NK: Pathogenesis of experimental cholera in infant rabbits. I. Observations on the intraintestinal infection and experimental cholera produced with cell-free products. J Infect Dis 114: 203–216, 1964.PubMedCrossRefGoogle Scholar
  39. 39.
    Finkelstein RA: Immunological aspects of experimental cholera, in Proceedings of the Cholera Research Symposium, Honolulu, 1965, US Public Health Service Publication No 1328. Washington DC, US Government Printing Office, 1965, pp 58-63.Google Scholar
  40. 40.
    SEATO_Conference on Cholera, Dacca, East Pakistan, December 5–8, 1960. Bangkok, Post Publishing Co Ltd, 1962.Google Scholar
  41. 41.
    Proceedings of the Cholera Research Symposium, Honolulu, 1965, U.S. Public Health Service Publication No 1328. Washington DC, US Government Printing Office, 1965, pp. 1-397.Google Scholar
  42. 42.
    Finkelstein RA: Cholera. CRC Crit Rev Microbiol 2: 553–623, 1973.CrossRefGoogle Scholar
  43. 43.
    Burrows W, Kaur J: Cholera toxins, in Barua D, Burrows W (eds): Cholera. Philadelphia, WB Saunders, 1974, pp 143–167.Google Scholar
  44. 44.
    Finkelstein RA: Progress in the study of cholera and related enterotoxins, in Bernheimer A (ed): Mechanisms in Bacterial Toxinology. New York, John Wiley and Sons, 1976, pp 53–84.Google Scholar
  45. 45.
    Ouchterlony Ö, Holmgren J (eds): Proceedings of the 43rd Nobel Symposium: Cholera and Related Diarrheas—Molecular Aspects of a Global Health Problem, Stockholm, 1978. Basel, Switzerland, S Karger, 1980.Google Scholar
  46. 46.
    Holmgren J: Actions of cholera toxin and the prevention and treatment of cholera. Nature (London) 292: 413–417, 1981.CrossRefGoogle Scholar
  47. 47.
    Levine MM, Kaper JB, Black RE, et al: New knowledge on pathogenesis of bacterial enteric infection as applied to vaccine development. Microbiol Rev 1983: 510–550, 1983.Google Scholar
  48. 48.
    Finkelstein RA: Cholera, in Germanier R (ed): Bacterial Vaccines. New York, Academic Press, Inc., 1984, pp 107–136.CrossRefGoogle Scholar
  49. 49.
    Finkelstein RA, Dorner F: Cholera enterotoxin (choleragen), in Dorner F. Drews J (eds): Pharmacology of Bacterial Toxins. Oxford, Pergamon Press, 1986, pp 161–171.Google Scholar
  50. 50.
    Finkelstein RA: Structure of the cholera enterotoxin (choleragen) and the immunologically related ADP-ribosylating heat-labile enterotoxins, in Hardegree MC, Habig WH, Tu A (eds): Handbook of Natural Toxins, Vol II: Bacterial Toxins. New York, Marcel Dekker Inc, 1988, pp. 1–38.Google Scholar
  51. 51.
    Finkelstein RA, Atthasampunna P, Chulasamaya M, et al: Pathogenesis of experimental cholera: biologic activities of purified Procholeragen A. J Immunol 96: 440–449, 1966.PubMedGoogle Scholar
  52. 52.
    Panse MW, Dutta NK: Excretion of toxin with stools of cholera patients. J Infect Dis 109: 81–84, 1961.PubMedCrossRefGoogle Scholar
  53. 53.
    Benyajati C: Experimental cholera in humans. Brit Med J 1: 140–142, 1966.PubMedCrossRefGoogle Scholar
  54. 54.
    Craig JP: The effect of cholera stool and culture filtrates on the skin of guinea pigs and rabbits, in Proceedings of the Cholera Research Symposium, Honolulu, 1965, US Public Health Service Publication No 1328. Washington DC, US Government Printing Office, 1965, pp 153–158.Google Scholar
  55. 55.
    Craig JP: A permeability factor (toxin) found in cholera stools and culture filtrates and its neutralization by convalescent cholera sera. Nature 207: 614–616, 1965.PubMedCrossRefGoogle Scholar
  56. 56.
    Finkelstein RA, LoSpalluto JJ: Pathogenesis of experimental cholera: preparation and isolation of choleragen and choleragenoid. J Exp Med 130: 185–202, 1969.PubMedCrossRefGoogle Scholar
  57. 57.
    Finkelstein RA: Monospecific equine antiserum against cholera exo-enterotoxin. Infect Immun 2: 691–697, 1970.PubMedGoogle Scholar
  58. 58.
    Finkelstein RA, Boesman M, Neoh SH, et al: Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen). J Immunol 113: 145–150, 1974.PubMedGoogle Scholar
  59. 59.
    Lönnroth I, Holmgren J: Subunit structure of cholera toxin. J Gen Microbiol 76: 417–427, 1973.PubMedCrossRefGoogle Scholar
  60. 60.
    Bennett V, Cuatrecasas P: Cholera toxin: membrane gangliosides and activation of adenylate cyclase, in Cuatrecasas, P (eds.): The Specificity and Action of Animal, Bacterial and Plant Toxins. London, Chapman and Hall, 1977, pp 3–66.Google Scholar
  61. 61.
    Green H, Kehinde O, Thomas J: Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76: 5665–5668, 1979.PubMedCrossRefGoogle Scholar
  62. 62.
    Okada N, Kitano Y, Ichihara K: Effects of cholera toxin on proliferation of cultured human keratinocytes in relation to intracellular cyclic AMP levels. J Invest Dermatol 79: 42–47, 1982.PubMedCrossRefGoogle Scholar
  63. 63.
    Honda T., Finkelstein RA: Selection and characteristics of a novel Vibrio cholerae mutant lacking the A (ADP-ribosylating) portion of the cholera enterotoxin. Proc Natl Acad Sci USA 76: 2052–2056, 1979.PubMedCrossRefGoogle Scholar
  64. 64.
    Levine MM, Black RE, Clements ML, et al: Evaluation in humans of attenuated Vibrio cholerae El Tor Ogawa Strain Texas Star-SR as a live oral vaccine. Infect Immun 43: 515–522, 1984.PubMedGoogle Scholar
  65. 65.
    Kaper JB, Baldini MM, Chapter 4, this volume.Google Scholar
  66. 66.
    Finkelstein RA, Vasil ML, Holmes RK: Studies on toxinogenesis in Vibrio cholerae. I. Isolation of mutants with altered toxinogenicity. J Infect Dis 129: 117–123, 1974.PubMedCrossRefGoogle Scholar
  67. 67.
    Woodward WE, Gilman RH, Hornick RB, et al: Efficacy of a live oral cholera vaccine in human volunteers. Dev Biol Stand 33: 108–112, 1976.PubMedGoogle Scholar
  68. 68.
    Finkelstein RA, LoSpalluto JJ: Production of highly purified choleragen and choleragenoid. J Infect Dis 121(Suppl):S63–S72, 1970.CrossRefGoogle Scholar
  69. 69.
    Finkelstein RA, Fujita K, LoSpalluto JJ: Procholeragenoid: an aggregated intermediate in the formation of choleragenoid. J Immunol 107: 1043–1051, 1971.PubMedGoogle Scholar
  70. 70.
    Mekalanos JJ, Collier RJ, Romig WR: Purification of cholera toxin and its subunits: new methods of preparation and the use of hypertoxinogenic mutants. Infect Immun 20: 552–558, 1978.PubMedGoogle Scholar
  71. 71.
    Tayot J-L, Tardy M: Isolation of cholera toxin by affinity chromatography on porous silica beads with covalently coupled ganglioside GM1, in Svennerholm L, Dreyfus H, Urban P-F (eds): Structure and Function of Gangliosides. New York, Plenum Publishing Corp, 1980, pp 471–478.CrossRefGoogle Scholar
  72. 72.
    LoSpalluto JJ, Finkelstein RA: Chemical and physical properties of cholera exo-enterotoxin (choleragen) and its spontaneously formed toxoid (choleragenoid). Biochim Biophys Acta 257: 158–166, 1972.PubMedCrossRefGoogle Scholar
  73. 73.
    Finkelstein RA, LoSpalluto JJ: Crystalline cholera toxin and toxoid. Science 175: 529–530, 1972.PubMedCrossRefGoogle Scholar
  74. 74.
    Finkelstein RA, LaRue MK, LoSpalluto JJ: Properties of the cholera exo-enterotoxin: effects of dispersing agents and reducing agents in gel filtration and electrophoresis. Infect Immun 6: 934–944, 1972.PubMedGoogle Scholar
  75. 75.
    Finkelstein RA, Boesman-Finkelstein M, Holt P: Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: FM Burnet revisited. Proc Natl Acad Sci USA 80: 1092–1095, 1983.PubMedCrossRefGoogle Scholar
  76. 76.
    Booth BA, Boesman-Finkelstein M, Finkelstein RA: Vibrio cholerae hemagglutinin/protease nicks cholera enterotoxin. Infect Immun 45: 558–560, 1984.PubMedGoogle Scholar
  77. 77.
    Finkelstein RA, Peterson JW, LoSpalluto JJ: Conversion of cholera exo-enterotoxin (choleragen) to natural toxoid (choleragenoid). J Immunol 106: 868–871, 1971.PubMedGoogle Scholar
  78. 78.
    Spangler BD, Westbrook EM: Crystallization of isoelectrically homogenous cholera toxin. Biochem 28: 1333–1340, 1989.CrossRefGoogle Scholar
  79. 79.
    Fürer E, Cryz SJ Jr, Germanier R: Protection of piglets against neonatal colibacillosis based on antitoxic immunity. Dev Biol Stand 53: 151–167, 1983.Google Scholar
  80. 80.
    Klapper DG, Finkelstein RA, Capra JD: Subunit structure and N-terminal amino acid sequence of the three chains of cholera enterotoxin. Immunochemistry 13: 605–611, 1976.PubMedCrossRefGoogle Scholar
  81. 81.
    Lai C-Y, Mendez E, Chang D: Chemistry of cholera toxin: the subunit structure. J Infect Dis 133(Suppl):S23–S30, 1976.CrossRefGoogle Scholar
  82. 82.
    Gill DM: The arrangement of subunits in cholera toxin. Biochemistry 15: 1242–1248, 1976.PubMedCrossRefGoogle Scholar
  83. 83.
    Ludwig DS, Ribi HO, Schoolnik GK, et al: Two-dimensional crystals of cholera toxin B subunit—receptor complexes: projected structure at 17A resolution. Proc Natl Acad Sci USA 83: 8585–8588, 1986.PubMedCrossRefGoogle Scholar
  84. 84.
    Ohtomo N, Muraoka T, Tashio A, et al: Size and structure of the cholera toxin molecule and its subunits. J Infect Dis 133(Suppl):S31–S40, 1976.CrossRefGoogle Scholar
  85. 85.
    Kurosky A, Markel DE, Peterson JW, et al: Primary structure of cholera toxin α-chain: a glycoprotein hormone analog? Science 195: 2299–2301, 1977.CrossRefGoogle Scholar
  86. 86.
    Kurosky A, Markel DE, Peterson JW, et al: Covalent structure of the a chain of cholera enterotoxin. J Biol Chem 252: 7257–7264, 1977.PubMedGoogle Scholar
  87. 87.
    Lai C-Y: Determination of the primary structure of cholera toxin B subunit. J Biol Chem 252: 7249–7256, 1977.PubMedGoogle Scholar
  88. 88.
    Mekalanos JJ, Swartz DJ, Pearson GDN, et al: Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306: 551–557, 1983.PubMedCrossRefGoogle Scholar
  89. 89.
    Betley MJ, Miller VL, Mekalanos JJ: Genetics of bacterial enterotoxins. Ann Rev Microbiol 40: 577–605, 1986.CrossRefGoogle Scholar
  90. 90.
    Brickman TJ, Boesman-Finkelstein M, Mclntosh MA: Molecular cloning and nucleotide sequence analysis of cholera toxin genes of the CtxA Vibrio cholerae strain Texas Star SR. Infect Immun 58: 4142–4144, 1990.PubMedGoogle Scholar
  91. 91.
    Marchlewicz BA, Finkelstein RA: Immunologic differences among the cholera/coli family of enterotoxins. Diagn Microbiol Infect Dis 1: 129–138, 1983.PubMedCrossRefGoogle Scholar
  92. 92.
    Finkelstein RA, Burks MF, Zupan A, et al: Epitopes of the cholera family of enterotoxins. Rev Infect Dis 9: 544–561, 1987.PubMedCrossRefGoogle Scholar
  93. 93.
    Lockman H, Kaper JB: Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J Biol Chem 258: 13722–13726, 1983.PubMedGoogle Scholar
  94. 94.
    Tsuji T, Iida T, Honda T, et al: A unique amino acid sequence of the B subunit of a heat-labile enterotoxin isolated from a human enterotoxigenic Escherichia coli. Microbial Pathogen 2: 381–390, 1987.CrossRefGoogle Scholar
  95. 95.
    Jacob CO, Arnon R, Finkelstein RA: Immunity towards heat labile enterotoxins of porcine and human Eschericha coli strains achieved with synthetic peptides. Infect Immun 52: 562–567, 1986.PubMedGoogle Scholar
  96. 96.
    Yamamoto T, Tamura T, Yokota T: Primary structure of a heat-labile enterotoxin produced by Escherichia coli pathogenic for humans. J Biol Chem 259: 5037–5044, 1984.PubMedGoogle Scholar
  97. 97.
    Yamamoto T, Nakazawa T, et al: Evolution and structure of two ADP-ribosylation enterotoxins, Escherichia coli heat-labile toxin and cholera toxin. FEBS Lett 169: 241–246, 1984.PubMedCrossRefGoogle Scholar
  98. 98.
    Yamamoto T, Gojabori T, Yokota T: Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae 01. J Bacteriol 169: 1352–1357, 1987.PubMedGoogle Scholar
  99. 99.
    Vasil ML, Holmes RK, Finkelstein RA: Conjugal transfer of a chromosomal gene determining production of enterotoxin in Vibrio cholerae. Science 187: 849–850, 1975.PubMedCrossRefGoogle Scholar
  100. 100.
    Holmes RK, Bramucci MG, Twiddy EM: Genetics of toxinogenesis of Vibrio cholerae and Escherichia coli. Contr Microbiol Immunol 6: 165–177, 1979.Google Scholar
  101. 101.
    Mekalanos JJ: Cholera toxin: genetic analysis, regulation and role in pathogenesis. Curr Top Microbiol Immunol 118: 97–118, 1985.PubMedCrossRefGoogle Scholar
  102. 102.
    Guidolin A, Manning PA: Genetics of Vibrio cholerae and its bacteriophages. Microbiol Rev 51: 285–298, 1987.PubMedGoogle Scholar
  103. 103.
    Miller VL, Taylor RK, Mekalanos JJ: Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48: 271–279, 1987.PubMedCrossRefGoogle Scholar
  104. 104.
    Gill DM: Seven toxic peptides that cross cell membranes, in Jeljaszewicz J, Wadström T (eds): Bacterial Toxins and Cell Membranes. London, Academic Press, 1978, pp 291–332.Google Scholar
  105. 105.
    Gill DM: Cholera toxin-catalyzed ADP-ribosylation of membrane proteins, in Hayaishi O, Ueda K (eds): ADP Ribosylation Reactions: Biology and Medicine. New York, Academic Press Inc, 1982, pp 593–621.Google Scholar
  106. 106.
    Moss J, Vaughan M: Mechanism of action of Escherichia coli heat-labile enterotoxin: activation of adenylate cyclase by ADP-ribosylation, in Hayaishi O, Ueda K (eds): ADP Ribosylation Reactions: Biology and Medicine. New York, Academic Press Inc, 1982, pp 623–636.Google Scholar
  107. 107.
    Vaughan M: Choleragen, adenylate cyclase, and ADP-ribosylation, in: The Harvey Lectures, Series 77. New York, Academic Press Inc, 1983, pp 43–62.Google Scholar
  108. 108.
    van Heyningen WE, Carpenter CCJ, Pierce NF, et al: Deactivation of cholera toxin by ganglioside. J Infect Dis 124: 415–418, 1971.PubMedCrossRefGoogle Scholar
  109. 109.
    King CA, van Heyningen WE: Deactivation of cholera toxin by a sialidase-resistant monosialosyl ganglioside. J Infect Dis 127: 639–647, 1973.PubMedCrossRefGoogle Scholar
  110. 110.
    Holmgren J, Svennerholm A-M: Mechanisms of disease and immunity in cholera: a review. J Infect Dis 136(Suppl):S105–S112, 1977.PubMedCrossRefGoogle Scholar
  111. 111.
    Eidels L, Prioa RL, Hart DA: Membrane receptors for bacterial toxins. Microbiol Rev 47: 596–620, 1983.PubMedGoogle Scholar
  112. 112.
    Pierce NF: Differential inhibitory effects of cholera toxoids and ganglioside on the enterotoxins of Vibrio cholerae and Escherichia coli. J Exp Med 137: 1009–1023, 1973.PubMedCrossRefGoogle Scholar
  113. 113.
    Peterson JW, LoSpalluto JJ, Finkelstein RA: Localization of cholera toxin in vivo. J Infect Dis 126: 617–628, 1972.PubMedCrossRefGoogle Scholar
  114. 114.
    Hollenberg MD, Fishman PH, Bennett V, Cuatrecasas P: Cholera toxin and cell growth: role of membrane gangliosides. Proc Natl Acad Sci USA 71: 4224–4228, 1974.PubMedCrossRefGoogle Scholar
  115. 115.
    Moss J, Fishman PH, Mangeniello VC, et al: Functional incorporation of ganglioside into intact cells: induction of choleragen responsiveness. Proc Natl Acad Sci USA 73: 1034–1037, 1976.PubMedCrossRefGoogle Scholar
  116. 116.
    Clements JD, Finkelstein RA: Isolation and characterization of homogeneous heat-labile enterotoxin(s) (LT(s)) with high specific activity from Escherichia coli cultures. Infect Immun 24: 760–769, 1979.PubMedGoogle Scholar
  117. 117.
    Griffiths SL, Finkelstein RA, Critchley DR: Characterization of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders. Biochem J 238: 313–322, 1986.PubMedGoogle Scholar
  118. 118.
    Ludwig DS, Holmes RK, Schoolnik GK: Chemical and immunochemical studies on the receptor binding domain of cholera toxin B subunit. J Biol Chem 260: 12528–12534, 1985.PubMedGoogle Scholar
  119. 119.
    Kazemi M, Finkelstein RA: Study of epitopes of cholera enterotoxin related enterotoxins by checkerboard immunoblotting. Infect Immun 58: 2352–2360, 1990.PubMedGoogle Scholar
  120. 120.
    Moss J, Richards RL, Alving CR, et al: Effect of the A and B protomers of choleragen on release of trapped glucose from liposomes containing or lacking ganglioside GM1 J Biol Chem 252: 797–798, 1977.PubMedGoogle Scholar
  121. 121.
    Tosteson MT, Tosteson DC, Rubnitz J: Cholera toxin interactions with lipid bilayers. Acta Physiol Scand 481(Suppl): 21–25, 1980.Google Scholar
  122. 122.
    Gill DM, Woolkalis M: Toxins which activate adenylate cyclase, in Evered D, Whelan J (eds): Ciba Foundation Symposium 112: Microbial Toxins and Diarrhoeal Disease. London, Pitman Publishing Ltd, 1985, pp 57–73.Google Scholar
  123. 123.
    Fishman PH: Mechanism of action of cholera toxin: events on the cell surface, in Field M. Fordtran JS, Schultz SG (eds): Secretory Diarrhea. Baltimore, Waverly Press Inc, 1980, pp 85–106.Google Scholar
  124. 124.
    Field M, Plotkin GR, Silen W: Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature (London) 217: 469–471, 1968.CrossRefGoogle Scholar
  125. 125.
    Field M: Intestinal secretion: effect of cyclic AMP and its role in cholera. N Engl J Med 284: 1137–1144, 1971.CrossRefGoogle Scholar
  126. 126.
    Butcher RW, Baird CE, Sutherland EW: Effects of lipolytic and antilipolytic substances on adenosine 3′,5′-monophosphate levels in isolated fat cells. J Biol Chem 243: 1705–1712, 1970.Google Scholar
  127. 127.
    Field M, Fromm D, Wallace CK, Greenough WB III: Stimulation of active chloride secretion in small intestine by cholera exotoxin. J Clin Invest 486: 24a(abstr), 1969.Google Scholar
  128. 128.
    Vaughan M, Pierce NF, Greenough WB III: Stimulation of glycerol production in fat cells by cholera toxin. Nature 226: 658–659, 1970.PubMedCrossRefGoogle Scholar
  129. 129.
    Greenough WB III, Pierce NF, Vaughan M: Titration of cholera enterotoxin and antitoxin in isolated fat cells. J Infect Dis 121(Suppl):S111–S113, 1970.CrossRefGoogle Scholar
  130. 130.
    Wolff, J, Temple R, Cook GH: Stimulation of steroid secretion in adrenal tumor cells by choleragen. Proc Natl Acad Sci USA 70: 2741–2744, 1973.PubMedCrossRefGoogle Scholar
  131. 131.
    Donta ST, King M: Induction of steroidogenesis in tissue culture by cholera enterotoxin. Nature 243: 246–247, 1973.Google Scholar
  132. 132.
    Guerrant RL, Brunton LL, Schnaitman TC, et al: Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun 10: 320–327, 1974.PubMedGoogle Scholar
  133. 133.
    Field M: Mode of action of cholera toxin: stabilization of catecholamine-sensitive adenylate cyclase in turkey erythrocytes. Proc Natl Acad Sci USA 71: 3299–3303, 1974.PubMedCrossRefGoogle Scholar
  134. 134.
    Schafer DE, Lust WD, Sircar B, et al: Elevated concentration of adenosine 3′:5′-cyclic monophosphate in intestinal mucosa after treatment with cholera toxin. Proc Natl Acad Sci USA 67: 851–856, 1970.PubMedCrossRefGoogle Scholar
  135. 135.
    Sharp GWG, Hynie S: Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229: 266–269, 1971.PubMedCrossRefGoogle Scholar
  136. 136.
    Chen LC, Rohde JE, Sharp GWG: Intestinal adenyl-cyclase activity in human cholera. Lancet i: 939–941, 1971.CrossRefGoogle Scholar
  137. 137.
    Gill DM, Pappenheimer AM: Diphtheria: recent studies have clarified the molecular mechanisms involved in its pathogenesis. Science 182: 353–358, 1973.PubMedCrossRefGoogle Scholar
  138. 138.
    Zieve PD, Pierce NF, Greenough WB III: Stimulation of glycogenolysis by purified cholera exotoxin in disrupted cells. Johns Hopkins Med J 129: 299–303, 1971.PubMedGoogle Scholar
  139. 139.
    Gill DM, King CA: The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem 250: 6424–6432, 1975.PubMedGoogle Scholar
  140. 140.
    Gilman AG: G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649, 1987.PubMedCrossRefGoogle Scholar
  141. 141.
    Powell CW: The role of G proteins in transmembrane signalling. Biochem J 272: 1–13, 1990.Google Scholar
  142. 142.
    Powell DW, Berschneider HM, Lawson LD, et al: Regulation of water and ion movement in intestine, in Evered D, Whelan J (eds): Ciba Foundation Symposium 112: Microbial Toxins and Diarrheal Disease. London, Pitman Publishing Ltd, 1985, pp 14–33.Google Scholar
  143. 143.
    Peterson JW, Ochoa LG: Role of prostaglandins and CAMP in the secretory effects of cholera toxin. Science 245: 857–859, 1989.PubMedCrossRefGoogle Scholar
  144. 144.
    Gill DM: Sequence homologies among the enzymically active portions of ADP ribosylating toxins. Zbl Bakt Suppl 17: 315–323, 1988.Google Scholar
  145. 145.
    Weiss AA, Hewlett EL: Virulence factors of Bordetella pertussis. Ann Rev Microbiol 40: 661–686, 1986.CrossRefGoogle Scholar
  146. 146.
    O’Brien AD, Holmes RK: Shiga and shiga-like toxins. Microbiol Rev 51: 206–220, 1987.PubMedGoogle Scholar
  147. 147.
    Greenberg RN, Guerrant RL: E. coli heat-stable enterotoxin, in Dorner F, Drews J (eds): Pharmacology of Bacterial Toxins. Oxford, Pergamon Press, 1986, pp 115–151.Google Scholar
  148. 148.
    Gorbach SL, Banwell JG, Chatterjee BD, et al: Acute undifferentiated human diarrhea in the tropics. I. Alterations in intestinal microflora. J Clin Invest 50: 881–889, 1971.PubMedCrossRefGoogle Scholar
  149. 149.
    Sack RB, Gorbach SL, Banwell JG, et al: Enterotoxigenic Escherichia coli isolated from patients with severe cholera-like disease. J Infect Dis 123: 378–385, 1971.PubMedCrossRefGoogle Scholar
  150. 150.
    Barnum DA, Glantz PJ, Moon HW: Colibacillosis, in CIBA Veterinary Monograph Series/TWO. Summit, NJ, CIBA Pharmaceutical Co, 1967.Google Scholar
  151. 151.
    Gyles CL, Barnum DA: A heat-labile enterotoxin from strains of Escherichia coli enteropathogenic for pigs. J Infect Dis 120: 419–426, 1969.PubMedCrossRefGoogle Scholar
  152. 152.
    Smith HW, Halls S: Studies on Escherichia coli enterotoxin. J Path Bact 93: 531–543, 1967.PubMedCrossRefGoogle Scholar
  153. 153.
    Smith HW, Gyles CL: The relationship between two apparently different enterotoxins produced by enteropathogenic strains of Escherichia coli of porcine origin. J Med Microbiol 3: 387–401, 1970.PubMedCrossRefGoogle Scholar
  154. 154.
    Gyles CL: Relationships among heat-labile enterotoxins of Escherichia coli and Vibrio cholerae. J Infect Dis 129: 277–283, 1974.PubMedCrossRefGoogle Scholar
  155. 155.
    Finkelstein RA: Laboratory production and isolation of enterotoxins and isolation of a candidate live vaccine for diarrheal disease, in Proceedings of the 43rd Nobel Symposium: Cholera and Related DiarrheasMolecular Aspects of a Global Health Problem, Stockholm, 1978. Basel, Switzerland, S. Karger, 1980, pp 64-79.Google Scholar
  156. 156.
    Dorner F: Escherichia coli enterotoxin purification and partial characterization. J Biol Chem 250: 8712–8719, 1975.PubMedGoogle Scholar
  157. 157.
    Finkelstein RA, LaRue MK, Johnston DW, et al: Isolation and properties of heat-labile enterotoxin(s) from enterotoxigenic Escherichia coli. J Infect Dis 133(Suppl):S120–S137, 1976.CrossRefGoogle Scholar
  158. 158.
    Rappaport RS, Sagin JF, Pierzchala WA, et al: Activation of heat-labile Escherichia coli enterotoxin by trypsin. J Infect Dis 133(Suppl):S41–S54, 1976.CrossRefGoogle Scholar
  159. 159.
    Neill RJ, Ivins BE, Holmes RK: Synthesis and secretion of the plasmid-coded heat-labile enterotoxin of Escherichia coli in Vibrio cholerae. Science 221: 289–291, 1983.PubMedCrossRefGoogle Scholar
  160. 160.
    Clements JD, Yancey RJ, Finkelstein RA: Properties of homogeneous heat-labile enterotoxin from Escherichia coli. Infect Immun 29: 91–97, 1980.PubMedGoogle Scholar
  161. 161.
    Kunkel SV, Robertson DC: Purification and chemical characterization of the heat-labile enterotoxin produced by enterotoxigenic Escherichia coli. Infect Immun 25: 586–596, 1979.PubMedGoogle Scholar
  162. 162.
    Dallas WS, Falkow S: Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature (London) 288: 499–501, 1980.CrossRefGoogle Scholar
  163. 163.
    Leong J, Vinal AC, Dallas WS: Nucleotide sequence comparison between heat-labile toxin B-subunit cistrons from Escherichia coli of human and porcine origin. Infect Immun 48: 73–77, 1985.PubMedGoogle Scholar
  164. 164.
    Zinnaka Y, Carpenter CCJ: An enterotoxin produced by non-cholera vibrios. Johns Hopkins Med J 131: 403–411, 1972.PubMedGoogle Scholar
  165. 165.
    Ohashi M, Shimada T, Fukumi H: In vitro production of enterotoxin and hemorrhagic principle by Vibrio cholerae, NAG. Japan J Med Sci Biol 25: 179–194, 1972.Google Scholar
  166. 166.
    Yamamoto K, Takeda Y, Miwatani T, et al: Purification and some properties of a npn-01 Vibrio cholerae enterotoxin that is identical to cholera enterotoxin. Infect Immun 39: 1128–1135, 1983.PubMedGoogle Scholar
  167. 167.
    Yamamoto K, Takeda Y, Miwatani T, et al: Evidence that a non-01 Vibrio cholerae produces enterotoxin that is similar but not identical to cholera enterotoxin. Infect Immun 41: 896–901, 1983.PubMedGoogle Scholar
  168. 168.
    Craig JP: The vibrio diseases in 1982, in Takeda Y, Miwatani T (eds): Bacterial Diarrheal Diseases. Boston, Martinus Nijhoff Publishers, 1985, pp 11–23.CrossRefGoogle Scholar
  169. 169.
    Finkelstein RA, Sobocinski PZ, Atthasampunna P, et al: Pathogenesis of experimental cholera: identification of choleragen (Procholeragen A) by disc immunoelectrophoresis and its differentiation from cholera mucinase. J Immunol 97: 25–33, 1966.PubMedGoogle Scholar
  170. 170.
    Vasil ML, Holmes RK, Finkelstein RA: Studies on toxinogenesis in Vibrio cholerae. II. An in vitro test for enterotoxin production. Infect Immun 9: 195–197, 1974.PubMedGoogle Scholar
  171. 171.
    Yamamoto T, Yokota T: Sequence of heat-labile enterotoxin of Escherichia coli pathogenic for humans. J Bacteriol 155: 728–733, 1983.PubMedGoogle Scholar
  172. 172.
    Tsuji T, Honda T, Miwatani T, et al: Analysis of receptor-binding site in Escherichia coli enterotoxin. J Biol Chem 260: 8552–8558, 1985.PubMedGoogle Scholar
  173. 173.
    Peterson JW: Salmonella toxin. Pharmacol Ther 11: 719–724, 1980.PubMedCrossRefGoogle Scholar
  174. 174.
    Finkelstein RA, Marchlewicz BA, McDonald RJ, et al: Isolation and characterization of a cholera-related enterotoxin from Salmonella typhimurium. FEMS Microbiol Lett 17: 239–241, 1983.CrossRefGoogle Scholar
  175. 175.
    Stephen J, Wallis TS, Starkey WG, et al: Salmonellosis in retrospect and prospect, in Evered D. Whelan J (eds): Ciba Foundation Symposium 112: Microbial Toxins and Diarrheal Disease. London, Pitman Publishing Ltd, 1985, pp 175–192.Google Scholar
  176. 176.
    Peterson JW, Chopra AK, Prasad R, et al: Partial purification and characterization of cloned Salmonella enterotoxin, in: Proceedings of the 23rd Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, Williamsburg VA, National Institute of Allergy and Infectious Diseases, NIH, p. 85.Google Scholar
  177. 177.
    Spira WM, Fedorka-Cray PJ: Purification of enterotoxins from Vibrio mimicus that appear to be identical to cholera toxin. Infect Immun 45: 679–684, 1984.PubMedGoogle Scholar
  178. 178.
    Shimada T, Sakazaki R, Horigome K, et al: Production of cholera-like enterotoxin by Aeromonas hydrophila. Jpn J Med Sci Biol 37: 141–144, 1984.PubMedGoogle Scholar
  179. 179.
    Potomski J, Burke V, Robinson J, et al: Aeromonas cytotonic enterotoxin cross reactive with cholera toxin. J Med Micro 23: 179–186, 1987.CrossRefGoogle Scholar
  180. 180.
    Potomski J, Burke V, Watson I, et al: Purification of cytotoxic enterotoxin ofAeromonas sobria by use of monoclonal antibodies. J Med Micro 23: 171–177, 1987.CrossRefGoogle Scholar
  181. 181.
    Walker RI, Caldwell MB, Lee EC, et al: Pathophysiology of Campylobacter enteritis. Microbiol Rev 50: 81–94, 1986.PubMedGoogle Scholar
  182. 182.
    Klipstein FA, Engert RF: Immunological interrelationships between cholera toxin and the heat-labile and heatstable enterotoxins of coliform bacteria. Infect Immun 18: 110–117, 1977.PubMedGoogle Scholar
  183. 183.
    Holmes RK, Twiddy EM, Pickett CL: Purification and characterization of Type II heat-labile enterotoxin of Escherichia coli. Infect Immun 53: 464–473, 1986.PubMedGoogle Scholar
  184. 184.
    Joo I: Cholera vaccines, in Barua D, Burrows W (eds): Cholera. Philadelphia, WB Saunders, 1974, pp 333–355.Google Scholar
  185. 185.
    Finkelstein RA: Immunology of cholera. Curr Top Microbiol Immunol 69: 137–196, 1975.CrossRefGoogle Scholar
  186. 186.
    Finkelstein RA: Immunology of Vibrio cholerae, in Nahmias AJ, O’Reilly RJ (eds): Comprehensive Immunology: Immunology of Human Infection. New York, Plenum Publishing Corp, 1981, pp 291–315.CrossRefGoogle Scholar
  187. 187.
    Feeley JC, Gangarosa EJ: in Ouchterlony Ö, Holmgren J (eds): Cholera and Related Diarrheas. Basel, S Karger, 1980, pp 204-210.Google Scholar
  188. 188.
    Finkelstein RA: Vaccines (?) against the cholera-related enterotoxin family. Microbiology 1985: 114–118, 1985.Google Scholar
  189. 189.
    Finkelstein RA: Dead vaccines are “alive” but live vaccines are not dead: analysis of options for immunization against cholera, in Holmgren J. Lindberg A, Mollby R (eds): Development of Vaccines and Drugs against Diarrhea, 11th Nobel Conference, Stockholm, 1985. Lund, Sweden Studentlitteratur, and Kent, England, Chartwell-Bratt Ltd, 1986, pp 74-81.Google Scholar
  190. 190.
    Cvjetanovic B: Economic considerations in cholera control, in Barua D, Burrows W (eds): Cholera. Philadelphia, WB Saunders, 1974, pp 435–445.Google Scholar
  191. 191.
    Finkelstein RA, Pongpairojana S: A test of antigenicity for the selection of strains for inclusion in cholera vaccines. Bull WHO 39: 247–259, 1968.PubMedGoogle Scholar
  192. 192.
    Curlin G. Levine R, Aziz KMA, et al: Field trial of cholera toxoid, in: Proceedings of the 11th Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, 1975. 1976, pp 314-329.Google Scholar
  193. 193.
    Sciortino CV, Finkelstein RA: Vibrio cholerae express iron-regulated outer membrane proteins in vivo. Infect Immun 42: 990–996, 1983.PubMedGoogle Scholar
  194. 194.
    Booth BA, Sciortino CV, Finkelstein RA: Adhesins of Vibrio cholerae, in Mirelman D (ed): Microbial Lectins and Agglutinins. New York, John Wiley and Sons, 1986, pp 169–182.Google Scholar
  195. 195.
    Booth BA, Dyer TJ, Finkelstein RA: Adherence of Vibrio cholerae to cultured human cells, in Sack RB, Zinnaka Y (eds): Advances in Research on Cholera and Related Diarrheas, Vol 7 Proceedings of the 23rd Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, Williamsburg VA, 1987. KTK Scientific Publishers, Tokyo, 1990, pp 19–35.Google Scholar
  196. 196.
    Kaper JB, Levine MM, Lockman HA, et al: Development and testing of a recombinant live oral cholera vaccine, in: Vaccines 85. Cold Spring Harbor NY, Cold Spring Harbor Laboratory, 1985, pp 107-111.Google Scholar
  197. 197.
    Levine MM, Kaper JB, Morris JG, et al: Reactogenicity, colonizing capacity, and immunogenicity of further attenuated, genetically engineered Vibrio cholerae 01 vaccine strains, in Kuwahara S, Pierce NF (eds.): Advances in Research on Cholera and related Diarrheas, Proceedings of the 21st Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, Bethesda MD, 1985. Tokyo, KTK Scientific Publishers, pp 225-230, 1988.Google Scholar
  198. 198.
    Cash RA, Music SI, Libonati JP, et al: Response of man to infection with Vibrio cholerae. II. Protection from illness afforded by previous disease and vaccine. J Infect Dis 130: 325–333, 1974.PubMedCrossRefGoogle Scholar
  199. 199.
    Owen RL, Pierce NF, Apple RT, et al: M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: a mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153: 1108–1118, 1986.PubMedCrossRefGoogle Scholar
  200. 200.
    Svennerholm A-M, Holmgren J: Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect Immun 13: 735–740, 1976.PubMedGoogle Scholar
  201. 201.
    Rappaport RS, Bonde G: Development of a vaccine against experimental cholera and Escherichia coli diarrheal disease. Infect Immun 32: 534–542, 1981.PubMedGoogle Scholar
  202. 202.
    Clemens JD, Sack DA, Harris JR, et al: Field trial of oral cholera vaccines in Bangladesh. Lancet II: 124–127, 1986.CrossRefGoogle Scholar
  203. 203.
    Clemens JD, Harris JR, Sack DA, et al: Field trial of oral cholera vaccines in Bangladesh: results of one year of follow-up. J Infect Dis 158: 60–69, 1988.PubMedCrossRefGoogle Scholar
  204. 204.
    Fujita K, Finkelstein RA: Antitoxic immunity in experimental cholera: comparison of immunity induced perorally and parenterally in mice. J Infect Dis 125: 647–655, 1972.PubMedCrossRefGoogle Scholar
  205. 205.
    Holmgren J: Experimental studies on cholera immunisation: the protective immunogenicity in rabbits of monomeric and polymeric crude exotoxin. J Med Microbiol 6: 363–370, 1973.PubMedCrossRefGoogle Scholar
  206. 206.
    Germanier R, Fürer E, Varallyay S, et al: Preparation of a purified antigenic cholera toxoid. Infect Immun 13: 1692–1698, 1976.PubMedGoogle Scholar
  207. 207.
    Peterson JW: Protection against experimental cholera by oral or parenteral immunization. Infect Immun 26: 594–598, 1979.PubMedGoogle Scholar
  208. 208.
    Fürer E, Cryz SJ Jr, Dorner F, et al: Protection against colibacillosis in neonatal piglets by immunization of dams with procholeragenoid. Infect Immun 35: 887–894, 1982.PubMedGoogle Scholar
  209. 209.
    Pierce NF, Cray WC Jr, Sacci JB Jr, et al: Procholeragenoid: a safe and effective antigen for oral immunization against experimental cholera. Infect Immun 40: 1112–1118, 1983.PubMedGoogle Scholar
  210. 210.
    Finkelstein RA, Hollingsworth RC: Antitoxic immunity in experimental cholera: observations with purified antigens and the rat foot edema model. Infect Immun 1: 468–473, 1970.PubMedGoogle Scholar
  211. 211.
    Northrup RS, Fauci AS: Adjuvant effect of cholera enterotoxin on the immune response of the mouse to sheep red blood cells. J Infect Dis 125: 672–673, 1972.PubMedCrossRefGoogle Scholar
  212. 212.
    Finkelstein RA, Sciortino CV, Rieke LC, et al: Preparation of “procoligenoids” from Escherichia coli heat-stable enterotoxins (LTs). Infect Immun 45: 518–521, 1984.PubMedGoogle Scholar
  213. 213.
    Klipstein FA, Engert RF, Houghten RA: Protection in rabbits immunized with a vaccine of Escherichia coli heat-stable toxin cross-linked to the heat-labile toxin B subunit. Infect Immun 40: 888–893, 1983.PubMedGoogle Scholar
  214. 214.
    Germanier R: Typhoid fever, in Germanier R (ed): Bacterial Vaccines. New York, Academic Press Inc, 1984, pp 137–165.CrossRefGoogle Scholar
  215. 215.
    Boesman-Finkelstein M, Sciortino CV, Finkelstein RA: Iron-related antibacterial activities of human milk, in Spik G, Montreuil J, Crichton JJ, Mazurier J (eds): Proteins of Iron Storage and Transport. Elsevier, Netherlands, Elsevier Science Publishers, 1985, pp 251–260.Google Scholar
  216. 216.
    Boesman-Finkelstein M, Finkelstein RA: Antimicrobial effects of human milk: inhibitory activity on enteric pathogens. FEMS Lett 27: 167–174, 1985.CrossRefGoogle Scholar
  217. 217.
    Dolan SA, Boesman-Finkelstein M, Finkelstein RA: Antimicrobial activity of human milk against pediatric pathogens. J Infect Dis 154: 722–725, 1986.PubMedCrossRefGoogle Scholar
  218. 218.
    Dolan SA, Boesman-Finkelstein M, Finkelstein RA: Inhibition of enteropathogenic bacteria in human milk whey in vitro. Pediatr Infect Dis J 8: 430–436, 1989.PubMedCrossRefGoogle Scholar
  219. 219.
    Boesman-Finkelstein M, Watson NE, Finkelstein RA: Bovine lactogenic immunity against cholera toxin-related enterotoxins and Vibrio cholerae outer membrane. Infect Immun 57: 1227–1234, 1989.PubMedGoogle Scholar
  220. 220.
    McClead RE, Gregory SA: Resistance of bovine colostral anti-cholera toxin antibody to in vitro and in vivo proteolysis. Infect Immun 44: 474–478, 1984.PubMedGoogle Scholar
  221. 221.
    Brüssow H, Hilpert H, Walther I, et al: Bovine milk immunoglobulins for passive immunity to infantile rotavirus gastroenteritis. J Clin Microbiol 25: 982–986, 1987.PubMedGoogle Scholar
  222. 222.
    Hilpert H, Brüssow H, Mietens C, et al: Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J Infect Dis 156: 158–166, 1987.PubMedCrossRefGoogle Scholar
  223. 223.
    Tacket CO, Herrington DA, Lonsonsky G, et al: Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli, N Engl J Med 318: 1240–1243, 1988.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Richard A. Finkelstein

There are no affiliations available

Personalised recommendations