Skip to main content

Cholera Enterotoxin (Choleragen)

A Historical Perspective

  • Chapter
Book cover Cholera

Part of the book series: Current Topics in Infectious Disease ((CTID))

Abstract

Slightly over a century ago, during the period from 1883 to 1885, Robert Koch summarized his masterful studies on the etiology of cholera in a series of reports1–8 which presented the first convincing evidence that a particular distinctive microorganism, which he isolated in pure culture and called “comma-bacillus” (now known as Vibrio cholerae O group 1), was:

  1. 1.

    Consistently present during the disease (chiefly in the intestines and the dejecta of the victims)

An important scientific innovation rarely makes its way by gradually winning over and converting its opponents: it rarely happens that Saul becomes Paul. What does happen is that its opponents gradually die out and that the growing generation is familiarized with the idea from the beginning.

Max Planck

The Philosophy of Physics [1936]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous: Dr. Koch’s newly described cholera-organism. Brit Med J 1883 (2): 828–829, 1883.

    Google Scholar 

  2. Anonymous: Dr. Koch’s fifth cholera report. Brit Med J 1884 (l): 375–376, 1884.

    Google Scholar 

  3. Anonymous: Dr. Koch’s sixth cholera report. Brit Med J 1884 (l): 568–569, 1884.

    Google Scholar 

  4. Anonymous: The German Cholera Commission. Brit Med J 1884 (l): 740, 1884.

    Google Scholar 

  5. Anonymous: Koch on cholera. Brit Med J 1884 (2): 427–428, 1884.

    Google Scholar 

  6. Anonymous: Conferences in Berlin for the discussion of cholera. Brit Med J 1885(1): 1011-1012, 1885.

    Google Scholar 

  7. Koch R: An address on cholera and its bacillus. Brit Med J 1884 (2): 403–407, 1884.

    Article  Google Scholar 

  8. Koch R: Further researches on cholera. Brit Med J 1886 (l): 6–8, 62-66, 1886.

    Article  Google Scholar 

  9. Koch, R: Die Aetiologie der Tuberkulose. Mittheilungen aus dem Kaiserlichen Gesundheitsamte 2: 1–88, 1884.

    Google Scholar 

  10. Pollitzer R: Cholera. Geneva, World Health Organization, 1959.

    Google Scholar 

  11. van Heyningen WE, Seal JR: Cholera: The American Scientific Experience, 1947–1980. Boulder, Westview Press, 1983.

    Google Scholar 

  12. De SN: Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533–1534, 1959.

    Article  PubMed  CAS  Google Scholar 

  13. De SN, Ghose ML: False reaction in ligated loop of rabbit intestine. Indian J Pathol Bacteriol 2: 121–128, 1959.

    Google Scholar 

  14. De SN, Chatterje DN: An experimental study of the mechanism of action of Vibrio cholerae on the intestinal mucous membrane. J Pathol Bacteriol 66: 559–562, 1953.

    Article  PubMed  CAS  Google Scholar 

  15. De SN, Bhattacharya K, Sarkar JK: A study of the pathogenicity of strains of Bacterium coli from acute and chronic enteritis. J Pathol Bacteriol 71: 201–209, 1956.

    Article  PubMed  CAS  Google Scholar 

  16. Violle H, Crendiropoulo: Note sur le cholèra experimental? C R Soc Biolog (Paris) 78: 331, 1915.

    Google Scholar 

  17. De SN, Ghose ML, Sen A: Activities of bacteria-free preparations from Vibrio cholerae. J Pathol Bacteriol 79: 373–380, 1960.

    Article  PubMed  CAS  Google Scholar 

  18. De SN: Cholera: Its Pathology and Pathogène sis. London, Oliver and Boyd, 1961.

    Google Scholar 

  19. Dutta NK, Panse MW, Kulkarni DR: Role of cholera toxin in experimental cholera. J Bacteriol 78: 594–595, 1959.

    PubMed  CAS  Google Scholar 

  20. Dutta NK, Habbu MK: Experimental cholera in infant rabbits: a method for chemotheurapeutic investigation. Brit J Pharmacol Chemother 10: 153–159, 1955.

    Article  CAS  Google Scholar 

  21. Mukherjee B, Bhattacharjee KK, De SN: Observations on experiments on infant rabbits with Vibrio cholerae. Indian J Med Res 57: 2205–2212, 1969.

    PubMed  CAS  Google Scholar 

  22. Finkelstein RA: Experimental cholera in infant rabbits: diarrhea or diuresis? Indian J Med Res 59: 50–31, 1971.

    PubMed  CAS  Google Scholar 

  23. Finkelstein RA: Nutrition of Vibrio cholerae, Ph.D. dissertation. Austin, University of Texas, Austin, 1955.

    Google Scholar 

  24. Finkelstein RA, Lankford CE: Nutrient requirements of Vibrio cholerae. Bacteriol Proc 1955: 49, 1955.

    Google Scholar 

  25. Finkelstein RA, LaBrec EH: Rapid identification of cholera vibrios with fluorescent antibody. J Bacteriol 78: 886–891, 1959.

    PubMed  CAS  Google Scholar 

  26. Finkelstein RA, Gomez CZ: Comparison of methods for the rapid recognition of cholera vibrios. Bull WHO 28: 327–332, 1963.

    PubMed  CAS  Google Scholar 

  27. Finkelstein RA, Ransom JP: Non-specific resistance to experimental cholera in embryonated eggs. J Exp Med 112: 315–328, 1960.

    Article  PubMed  CAS  Google Scholar 

  28. Finkelstein RA, Ramm GM: Effect of age on susceptibility to experimental cholera in embryonated eggs. J Infect Dis 111: 239–249, 1962.

    Article  Google Scholar 

  29. Finkelstein RA: Vibriocidal antibody inhibition (VAI) analysis: a technique for the identification of the predominant vibriocidal antibodies in serum and for the recognition and identification of Vibrio cholerae antigens. J Immunol 89: 264–271, 1962.

    CAS  Google Scholar 

  30. Finkelstein RA, Mukerjee S: Hemagglutination: a rapid method for differentiating Vibrio cholerae and El Tor vibrios. Proc Soc Exp Biol Med 112: 355–359, 1963.

    Article  Google Scholar 

  31. Smith HW: The antimicrobial activity of the stomach contents of suckling rabbits. J Pathol Bacteriol 91: 1–9, 1966.

    Article  PubMed  CAS  Google Scholar 

  32. Phillips RA: Cholera in the perspective of 1966. Ann Intern Med 65: 922–930, 1966.

    Article  PubMed  CAS  Google Scholar 

  33. Basaca-Sevilla V, Pesigan TP, Finkelstein RA: Observations on serological responses to cholera immunization. Am J Trop Med Hyg 13: 100–107, 1964.

    PubMed  CAS  Google Scholar 

  34. Finkelstein RA, Mukerjee S, Rudra BC: Demonstration and quantitation of antigen in cholera stool filtrates. J Infect Dis 113: 99–104, 1963.

    Article  PubMed  CAS  Google Scholar 

  35. Formal SB, Kundel D. Schneider H, et al: Studies with Vibrio cholerae in the ligated loop of the rabbit intestine. Brit J Exp Pathol 42: 504–510, 1961.

    CAS  Google Scholar 

  36. Jenkin CR, Rowley D: Possible factors in the pathogenesis of cholera. Brit J Exp Pathol 40: 474–482, 1959.

    CAS  Google Scholar 

  37. Norris HT, Dutta NK, Finkelstein RA, et al: Morphologic alterations of the intestine of ten day old rabbits given intact and ultrasonically disrupted cholera vibrios or cholera endotoxin? Fed Proc 22: 512, 1963.

    Google Scholar 

  38. Finkelstein RA, Norris HT, Dutta NK: Pathogenesis of experimental cholera in infant rabbits. I. Observations on the intraintestinal infection and experimental cholera produced with cell-free products. J Infect Dis 114: 203–216, 1964.

    Article  PubMed  CAS  Google Scholar 

  39. Finkelstein RA: Immunological aspects of experimental cholera, in Proceedings of the Cholera Research Symposium, Honolulu, 1965, US Public Health Service Publication No 1328. Washington DC, US Government Printing Office, 1965, pp 58-63.

    Google Scholar 

  40. SEATO_Conference on Cholera, Dacca, East Pakistan, December 5–8, 1960. Bangkok, Post Publishing Co Ltd, 1962.

    Google Scholar 

  41. Proceedings of the Cholera Research Symposium, Honolulu, 1965, U.S. Public Health Service Publication No 1328. Washington DC, US Government Printing Office, 1965, pp. 1-397.

    Google Scholar 

  42. Finkelstein RA: Cholera. CRC Crit Rev Microbiol 2: 553–623, 1973.

    Article  CAS  Google Scholar 

  43. Burrows W, Kaur J: Cholera toxins, in Barua D, Burrows W (eds): Cholera. Philadelphia, WB Saunders, 1974, pp 143–167.

    Google Scholar 

  44. Finkelstein RA: Progress in the study of cholera and related enterotoxins, in Bernheimer A (ed): Mechanisms in Bacterial Toxinology. New York, John Wiley and Sons, 1976, pp 53–84.

    Google Scholar 

  45. Ouchterlony Ö, Holmgren J (eds): Proceedings of the 43rd Nobel Symposium: Cholera and Related Diarrheas—Molecular Aspects of a Global Health Problem, Stockholm, 1978. Basel, Switzerland, S Karger, 1980.

    Google Scholar 

  46. Holmgren J: Actions of cholera toxin and the prevention and treatment of cholera. Nature (London) 292: 413–417, 1981.

    Article  CAS  Google Scholar 

  47. Levine MM, Kaper JB, Black RE, et al: New knowledge on pathogenesis of bacterial enteric infection as applied to vaccine development. Microbiol Rev 1983: 510–550, 1983.

    Google Scholar 

  48. Finkelstein RA: Cholera, in Germanier R (ed): Bacterial Vaccines. New York, Academic Press, Inc., 1984, pp 107–136.

    Chapter  Google Scholar 

  49. Finkelstein RA, Dorner F: Cholera enterotoxin (choleragen), in Dorner F. Drews J (eds): Pharmacology of Bacterial Toxins. Oxford, Pergamon Press, 1986, pp 161–171.

    Google Scholar 

  50. Finkelstein RA: Structure of the cholera enterotoxin (choleragen) and the immunologically related ADP-ribosylating heat-labile enterotoxins, in Hardegree MC, Habig WH, Tu A (eds): Handbook of Natural Toxins, Vol II: Bacterial Toxins. New York, Marcel Dekker Inc, 1988, pp. 1–38.

    Google Scholar 

  51. Finkelstein RA, Atthasampunna P, Chulasamaya M, et al: Pathogenesis of experimental cholera: biologic activities of purified Procholeragen A. J Immunol 96: 440–449, 1966.

    PubMed  CAS  Google Scholar 

  52. Panse MW, Dutta NK: Excretion of toxin with stools of cholera patients. J Infect Dis 109: 81–84, 1961.

    Article  PubMed  CAS  Google Scholar 

  53. Benyajati C: Experimental cholera in humans. Brit Med J 1: 140–142, 1966.

    Article  PubMed  CAS  Google Scholar 

  54. Craig JP: The effect of cholera stool and culture filtrates on the skin of guinea pigs and rabbits, in Proceedings of the Cholera Research Symposium, Honolulu, 1965, US Public Health Service Publication No 1328. Washington DC, US Government Printing Office, 1965, pp 153–158.

    Google Scholar 

  55. Craig JP: A permeability factor (toxin) found in cholera stools and culture filtrates and its neutralization by convalescent cholera sera. Nature 207: 614–616, 1965.

    Article  PubMed  CAS  Google Scholar 

  56. Finkelstein RA, LoSpalluto JJ: Pathogenesis of experimental cholera: preparation and isolation of choleragen and choleragenoid. J Exp Med 130: 185–202, 1969.

    Article  PubMed  CAS  Google Scholar 

  57. Finkelstein RA: Monospecific equine antiserum against cholera exo-enterotoxin. Infect Immun 2: 691–697, 1970.

    PubMed  CAS  Google Scholar 

  58. Finkelstein RA, Boesman M, Neoh SH, et al: Dissociation and recombination of the subunits of the cholera enterotoxin (choleragen). J Immunol 113: 145–150, 1974.

    PubMed  CAS  Google Scholar 

  59. Lönnroth I, Holmgren J: Subunit structure of cholera toxin. J Gen Microbiol 76: 417–427, 1973.

    Article  PubMed  Google Scholar 

  60. Bennett V, Cuatrecasas P: Cholera toxin: membrane gangliosides and activation of adenylate cyclase, in Cuatrecasas, P (eds.): The Specificity and Action of Animal, Bacterial and Plant Toxins. London, Chapman and Hall, 1977, pp 3–66.

    Google Scholar 

  61. Green H, Kehinde O, Thomas J: Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76: 5665–5668, 1979.

    Article  PubMed  CAS  Google Scholar 

  62. Okada N, Kitano Y, Ichihara K: Effects of cholera toxin on proliferation of cultured human keratinocytes in relation to intracellular cyclic AMP levels. J Invest Dermatol 79: 42–47, 1982.

    Article  PubMed  CAS  Google Scholar 

  63. Honda T., Finkelstein RA: Selection and characteristics of a novel Vibrio cholerae mutant lacking the A (ADP-ribosylating) portion of the cholera enterotoxin. Proc Natl Acad Sci USA 76: 2052–2056, 1979.

    Article  PubMed  CAS  Google Scholar 

  64. Levine MM, Black RE, Clements ML, et al: Evaluation in humans of attenuated Vibrio cholerae El Tor Ogawa Strain Texas Star-SR as a live oral vaccine. Infect Immun 43: 515–522, 1984.

    PubMed  CAS  Google Scholar 

  65. Kaper JB, Baldini MM, Chapter 4, this volume.

    Google Scholar 

  66. Finkelstein RA, Vasil ML, Holmes RK: Studies on toxinogenesis in Vibrio cholerae. I. Isolation of mutants with altered toxinogenicity. J Infect Dis 129: 117–123, 1974.

    Article  PubMed  CAS  Google Scholar 

  67. Woodward WE, Gilman RH, Hornick RB, et al: Efficacy of a live oral cholera vaccine in human volunteers. Dev Biol Stand 33: 108–112, 1976.

    PubMed  CAS  Google Scholar 

  68. Finkelstein RA, LoSpalluto JJ: Production of highly purified choleragen and choleragenoid. J Infect Dis 121(Suppl):S63–S72, 1970.

    Article  CAS  Google Scholar 

  69. Finkelstein RA, Fujita K, LoSpalluto JJ: Procholeragenoid: an aggregated intermediate in the formation of choleragenoid. J Immunol 107: 1043–1051, 1971.

    PubMed  CAS  Google Scholar 

  70. Mekalanos JJ, Collier RJ, Romig WR: Purification of cholera toxin and its subunits: new methods of preparation and the use of hypertoxinogenic mutants. Infect Immun 20: 552–558, 1978.

    PubMed  CAS  Google Scholar 

  71. Tayot J-L, Tardy M: Isolation of cholera toxin by affinity chromatography on porous silica beads with covalently coupled ganglioside GM1, in Svennerholm L, Dreyfus H, Urban P-F (eds): Structure and Function of Gangliosides. New York, Plenum Publishing Corp, 1980, pp 471–478.

    Chapter  Google Scholar 

  72. LoSpalluto JJ, Finkelstein RA: Chemical and physical properties of cholera exo-enterotoxin (choleragen) and its spontaneously formed toxoid (choleragenoid). Biochim Biophys Acta 257: 158–166, 1972.

    Article  PubMed  CAS  Google Scholar 

  73. Finkelstein RA, LoSpalluto JJ: Crystalline cholera toxin and toxoid. Science 175: 529–530, 1972.

    Article  PubMed  CAS  Google Scholar 

  74. Finkelstein RA, LaRue MK, LoSpalluto JJ: Properties of the cholera exo-enterotoxin: effects of dispersing agents and reducing agents in gel filtration and electrophoresis. Infect Immun 6: 934–944, 1972.

    PubMed  CAS  Google Scholar 

  75. Finkelstein RA, Boesman-Finkelstein M, Holt P: Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: FM Burnet revisited. Proc Natl Acad Sci USA 80: 1092–1095, 1983.

    Article  PubMed  CAS  Google Scholar 

  76. Booth BA, Boesman-Finkelstein M, Finkelstein RA: Vibrio cholerae hemagglutinin/protease nicks cholera enterotoxin. Infect Immun 45: 558–560, 1984.

    PubMed  CAS  Google Scholar 

  77. Finkelstein RA, Peterson JW, LoSpalluto JJ: Conversion of cholera exo-enterotoxin (choleragen) to natural toxoid (choleragenoid). J Immunol 106: 868–871, 1971.

    PubMed  CAS  Google Scholar 

  78. Spangler BD, Westbrook EM: Crystallization of isoelectrically homogenous cholera toxin. Biochem 28: 1333–1340, 1989.

    Article  CAS  Google Scholar 

  79. Fürer E, Cryz SJ Jr, Germanier R: Protection of piglets against neonatal colibacillosis based on antitoxic immunity. Dev Biol Stand 53: 151–167, 1983.

    Google Scholar 

  80. Klapper DG, Finkelstein RA, Capra JD: Subunit structure and N-terminal amino acid sequence of the three chains of cholera enterotoxin. Immunochemistry 13: 605–611, 1976.

    Article  PubMed  CAS  Google Scholar 

  81. Lai C-Y, Mendez E, Chang D: Chemistry of cholera toxin: the subunit structure. J Infect Dis 133(Suppl):S23–S30, 1976.

    Article  Google Scholar 

  82. Gill DM: The arrangement of subunits in cholera toxin. Biochemistry 15: 1242–1248, 1976.

    Article  PubMed  CAS  Google Scholar 

  83. Ludwig DS, Ribi HO, Schoolnik GK, et al: Two-dimensional crystals of cholera toxin B subunit—receptor complexes: projected structure at 17A resolution. Proc Natl Acad Sci USA 83: 8585–8588, 1986.

    Article  PubMed  CAS  Google Scholar 

  84. Ohtomo N, Muraoka T, Tashio A, et al: Size and structure of the cholera toxin molecule and its subunits. J Infect Dis 133(Suppl):S31–S40, 1976.

    Article  Google Scholar 

  85. Kurosky A, Markel DE, Peterson JW, et al: Primary structure of cholera toxin α-chain: a glycoprotein hormone analog? Science 195: 2299–2301, 1977.

    Article  Google Scholar 

  86. Kurosky A, Markel DE, Peterson JW, et al: Covalent structure of the a chain of cholera enterotoxin. J Biol Chem 252: 7257–7264, 1977.

    PubMed  CAS  Google Scholar 

  87. Lai C-Y: Determination of the primary structure of cholera toxin B subunit. J Biol Chem 252: 7249–7256, 1977.

    PubMed  CAS  Google Scholar 

  88. Mekalanos JJ, Swartz DJ, Pearson GDN, et al: Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306: 551–557, 1983.

    Article  PubMed  CAS  Google Scholar 

  89. Betley MJ, Miller VL, Mekalanos JJ: Genetics of bacterial enterotoxins. Ann Rev Microbiol 40: 577–605, 1986.

    Article  CAS  Google Scholar 

  90. Brickman TJ, Boesman-Finkelstein M, Mclntosh MA: Molecular cloning and nucleotide sequence analysis of cholera toxin genes of the CtxA Vibrio cholerae strain Texas Star SR. Infect Immun 58: 4142–4144, 1990.

    PubMed  CAS  Google Scholar 

  91. Marchlewicz BA, Finkelstein RA: Immunologic differences among the cholera/coli family of enterotoxins. Diagn Microbiol Infect Dis 1: 129–138, 1983.

    Article  PubMed  CAS  Google Scholar 

  92. Finkelstein RA, Burks MF, Zupan A, et al: Epitopes of the cholera family of enterotoxins. Rev Infect Dis 9: 544–561, 1987.

    Article  PubMed  CAS  Google Scholar 

  93. Lockman H, Kaper JB: Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J Biol Chem 258: 13722–13726, 1983.

    PubMed  CAS  Google Scholar 

  94. Tsuji T, Iida T, Honda T, et al: A unique amino acid sequence of the B subunit of a heat-labile enterotoxin isolated from a human enterotoxigenic Escherichia coli. Microbial Pathogen 2: 381–390, 1987.

    Article  CAS  Google Scholar 

  95. Jacob CO, Arnon R, Finkelstein RA: Immunity towards heat labile enterotoxins of porcine and human Eschericha coli strains achieved with synthetic peptides. Infect Immun 52: 562–567, 1986.

    PubMed  CAS  Google Scholar 

  96. Yamamoto T, Tamura T, Yokota T: Primary structure of a heat-labile enterotoxin produced by Escherichia coli pathogenic for humans. J Biol Chem 259: 5037–5044, 1984.

    PubMed  CAS  Google Scholar 

  97. Yamamoto T, Nakazawa T, et al: Evolution and structure of two ADP-ribosylation enterotoxins, Escherichia coli heat-labile toxin and cholera toxin. FEBS Lett 169: 241–246, 1984.

    Article  PubMed  CAS  Google Scholar 

  98. Yamamoto T, Gojabori T, Yokota T: Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae 01. J Bacteriol 169: 1352–1357, 1987.

    PubMed  CAS  Google Scholar 

  99. Vasil ML, Holmes RK, Finkelstein RA: Conjugal transfer of a chromosomal gene determining production of enterotoxin in Vibrio cholerae. Science 187: 849–850, 1975.

    Article  PubMed  CAS  Google Scholar 

  100. Holmes RK, Bramucci MG, Twiddy EM: Genetics of toxinogenesis of Vibrio cholerae and Escherichia coli. Contr Microbiol Immunol 6: 165–177, 1979.

    CAS  Google Scholar 

  101. Mekalanos JJ: Cholera toxin: genetic analysis, regulation and role in pathogenesis. Curr Top Microbiol Immunol 118: 97–118, 1985.

    Article  PubMed  CAS  Google Scholar 

  102. Guidolin A, Manning PA: Genetics of Vibrio cholerae and its bacteriophages. Microbiol Rev 51: 285–298, 1987.

    PubMed  CAS  Google Scholar 

  103. Miller VL, Taylor RK, Mekalanos JJ: Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48: 271–279, 1987.

    Article  PubMed  Google Scholar 

  104. Gill DM: Seven toxic peptides that cross cell membranes, in Jeljaszewicz J, Wadström T (eds): Bacterial Toxins and Cell Membranes. London, Academic Press, 1978, pp 291–332.

    Google Scholar 

  105. Gill DM: Cholera toxin-catalyzed ADP-ribosylation of membrane proteins, in Hayaishi O, Ueda K (eds): ADP Ribosylation Reactions: Biology and Medicine. New York, Academic Press Inc, 1982, pp 593–621.

    Google Scholar 

  106. Moss J, Vaughan M: Mechanism of action of Escherichia coli heat-labile enterotoxin: activation of adenylate cyclase by ADP-ribosylation, in Hayaishi O, Ueda K (eds): ADP Ribosylation Reactions: Biology and Medicine. New York, Academic Press Inc, 1982, pp 623–636.

    Google Scholar 

  107. Vaughan M: Choleragen, adenylate cyclase, and ADP-ribosylation, in: The Harvey Lectures, Series 77. New York, Academic Press Inc, 1983, pp 43–62.

    Google Scholar 

  108. van Heyningen WE, Carpenter CCJ, Pierce NF, et al: Deactivation of cholera toxin by ganglioside. J Infect Dis 124: 415–418, 1971.

    Article  PubMed  Google Scholar 

  109. King CA, van Heyningen WE: Deactivation of cholera toxin by a sialidase-resistant monosialosyl ganglioside. J Infect Dis 127: 639–647, 1973.

    Article  PubMed  CAS  Google Scholar 

  110. Holmgren J, Svennerholm A-M: Mechanisms of disease and immunity in cholera: a review. J Infect Dis 136(Suppl):S105–S112, 1977.

    Article  PubMed  Google Scholar 

  111. Eidels L, Prioa RL, Hart DA: Membrane receptors for bacterial toxins. Microbiol Rev 47: 596–620, 1983.

    PubMed  CAS  Google Scholar 

  112. Pierce NF: Differential inhibitory effects of cholera toxoids and ganglioside on the enterotoxins of Vibrio cholerae and Escherichia coli. J Exp Med 137: 1009–1023, 1973.

    Article  PubMed  CAS  Google Scholar 

  113. Peterson JW, LoSpalluto JJ, Finkelstein RA: Localization of cholera toxin in vivo. J Infect Dis 126: 617–628, 1972.

    Article  PubMed  CAS  Google Scholar 

  114. Hollenberg MD, Fishman PH, Bennett V, Cuatrecasas P: Cholera toxin and cell growth: role of membrane gangliosides. Proc Natl Acad Sci USA 71: 4224–4228, 1974.

    Article  PubMed  CAS  Google Scholar 

  115. Moss J, Fishman PH, Mangeniello VC, et al: Functional incorporation of ganglioside into intact cells: induction of choleragen responsiveness. Proc Natl Acad Sci USA 73: 1034–1037, 1976.

    Article  PubMed  CAS  Google Scholar 

  116. Clements JD, Finkelstein RA: Isolation and characterization of homogeneous heat-labile enterotoxin(s) (LT(s)) with high specific activity from Escherichia coli cultures. Infect Immun 24: 760–769, 1979.

    PubMed  CAS  Google Scholar 

  117. Griffiths SL, Finkelstein RA, Critchley DR: Characterization of the receptor for cholera toxin and Escherichia coli heat-labile toxin in rabbit intestinal brush borders. Biochem J 238: 313–322, 1986.

    PubMed  CAS  Google Scholar 

  118. Ludwig DS, Holmes RK, Schoolnik GK: Chemical and immunochemical studies on the receptor binding domain of cholera toxin B subunit. J Biol Chem 260: 12528–12534, 1985.

    PubMed  CAS  Google Scholar 

  119. Kazemi M, Finkelstein RA: Study of epitopes of cholera enterotoxin related enterotoxins by checkerboard immunoblotting. Infect Immun 58: 2352–2360, 1990.

    PubMed  CAS  Google Scholar 

  120. Moss J, Richards RL, Alving CR, et al: Effect of the A and B protomers of choleragen on release of trapped glucose from liposomes containing or lacking ganglioside GM1 J Biol Chem 252: 797–798, 1977.

    PubMed  CAS  Google Scholar 

  121. Tosteson MT, Tosteson DC, Rubnitz J: Cholera toxin interactions with lipid bilayers. Acta Physiol Scand 481(Suppl): 21–25, 1980.

    CAS  Google Scholar 

  122. Gill DM, Woolkalis M: Toxins which activate adenylate cyclase, in Evered D, Whelan J (eds): Ciba Foundation Symposium 112: Microbial Toxins and Diarrhoeal Disease. London, Pitman Publishing Ltd, 1985, pp 57–73.

    Google Scholar 

  123. Fishman PH: Mechanism of action of cholera toxin: events on the cell surface, in Field M. Fordtran JS, Schultz SG (eds): Secretory Diarrhea. Baltimore, Waverly Press Inc, 1980, pp 85–106.

    Google Scholar 

  124. Field M, Plotkin GR, Silen W: Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature (London) 217: 469–471, 1968.

    Article  CAS  Google Scholar 

  125. Field M: Intestinal secretion: effect of cyclic AMP and its role in cholera. N Engl J Med 284: 1137–1144, 1971.

    Article  CAS  Google Scholar 

  126. Butcher RW, Baird CE, Sutherland EW: Effects of lipolytic and antilipolytic substances on adenosine 3′,5′-monophosphate levels in isolated fat cells. J Biol Chem 243: 1705–1712, 1970.

    Google Scholar 

  127. Field M, Fromm D, Wallace CK, Greenough WB III: Stimulation of active chloride secretion in small intestine by cholera exotoxin. J Clin Invest 486: 24a(abstr), 1969.

    Google Scholar 

  128. Vaughan M, Pierce NF, Greenough WB III: Stimulation of glycerol production in fat cells by cholera toxin. Nature 226: 658–659, 1970.

    Article  PubMed  CAS  Google Scholar 

  129. Greenough WB III, Pierce NF, Vaughan M: Titration of cholera enterotoxin and antitoxin in isolated fat cells. J Infect Dis 121(Suppl):S111–S113, 1970.

    Article  Google Scholar 

  130. Wolff, J, Temple R, Cook GH: Stimulation of steroid secretion in adrenal tumor cells by choleragen. Proc Natl Acad Sci USA 70: 2741–2744, 1973.

    Article  PubMed  CAS  Google Scholar 

  131. Donta ST, King M: Induction of steroidogenesis in tissue culture by cholera enterotoxin. Nature 243: 246–247, 1973.

    CAS  Google Scholar 

  132. Guerrant RL, Brunton LL, Schnaitman TC, et al: Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun 10: 320–327, 1974.

    PubMed  CAS  Google Scholar 

  133. Field M: Mode of action of cholera toxin: stabilization of catecholamine-sensitive adenylate cyclase in turkey erythrocytes. Proc Natl Acad Sci USA 71: 3299–3303, 1974.

    Article  PubMed  CAS  Google Scholar 

  134. Schafer DE, Lust WD, Sircar B, et al: Elevated concentration of adenosine 3′:5′-cyclic monophosphate in intestinal mucosa after treatment with cholera toxin. Proc Natl Acad Sci USA 67: 851–856, 1970.

    Article  PubMed  CAS  Google Scholar 

  135. Sharp GWG, Hynie S: Stimulation of intestinal adenyl cyclase by cholera toxin. Nature 229: 266–269, 1971.

    Article  PubMed  CAS  Google Scholar 

  136. Chen LC, Rohde JE, Sharp GWG: Intestinal adenyl-cyclase activity in human cholera. Lancet i: 939–941, 1971.

    Article  Google Scholar 

  137. Gill DM, Pappenheimer AM: Diphtheria: recent studies have clarified the molecular mechanisms involved in its pathogenesis. Science 182: 353–358, 1973.

    Article  PubMed  Google Scholar 

  138. Zieve PD, Pierce NF, Greenough WB III: Stimulation of glycogenolysis by purified cholera exotoxin in disrupted cells. Johns Hopkins Med J 129: 299–303, 1971.

    PubMed  CAS  Google Scholar 

  139. Gill DM, King CA: The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem 250: 6424–6432, 1975.

    PubMed  CAS  Google Scholar 

  140. Gilman AG: G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649, 1987.

    Article  PubMed  CAS  Google Scholar 

  141. Powell CW: The role of G proteins in transmembrane signalling. Biochem J 272: 1–13, 1990.

    Google Scholar 

  142. Powell DW, Berschneider HM, Lawson LD, et al: Regulation of water and ion movement in intestine, in Evered D, Whelan J (eds): Ciba Foundation Symposium 112: Microbial Toxins and Diarrheal Disease. London, Pitman Publishing Ltd, 1985, pp 14–33.

    Google Scholar 

  143. Peterson JW, Ochoa LG: Role of prostaglandins and CAMP in the secretory effects of cholera toxin. Science 245: 857–859, 1989.

    Article  PubMed  CAS  Google Scholar 

  144. Gill DM: Sequence homologies among the enzymically active portions of ADP ribosylating toxins. Zbl Bakt Suppl 17: 315–323, 1988.

    CAS  Google Scholar 

  145. Weiss AA, Hewlett EL: Virulence factors of Bordetella pertussis. Ann Rev Microbiol 40: 661–686, 1986.

    Article  CAS  Google Scholar 

  146. O’Brien AD, Holmes RK: Shiga and shiga-like toxins. Microbiol Rev 51: 206–220, 1987.

    PubMed  Google Scholar 

  147. Greenberg RN, Guerrant RL: E. coli heat-stable enterotoxin, in Dorner F, Drews J (eds): Pharmacology of Bacterial Toxins. Oxford, Pergamon Press, 1986, pp 115–151.

    Google Scholar 

  148. Gorbach SL, Banwell JG, Chatterjee BD, et al: Acute undifferentiated human diarrhea in the tropics. I. Alterations in intestinal microflora. J Clin Invest 50: 881–889, 1971.

    Article  PubMed  CAS  Google Scholar 

  149. Sack RB, Gorbach SL, Banwell JG, et al: Enterotoxigenic Escherichia coli isolated from patients with severe cholera-like disease. J Infect Dis 123: 378–385, 1971.

    Article  PubMed  CAS  Google Scholar 

  150. Barnum DA, Glantz PJ, Moon HW: Colibacillosis, in CIBA Veterinary Monograph Series/TWO. Summit, NJ, CIBA Pharmaceutical Co, 1967.

    Google Scholar 

  151. Gyles CL, Barnum DA: A heat-labile enterotoxin from strains of Escherichia coli enteropathogenic for pigs. J Infect Dis 120: 419–426, 1969.

    Article  PubMed  CAS  Google Scholar 

  152. Smith HW, Halls S: Studies on Escherichia coli enterotoxin. J Path Bact 93: 531–543, 1967.

    Article  PubMed  CAS  Google Scholar 

  153. Smith HW, Gyles CL: The relationship between two apparently different enterotoxins produced by enteropathogenic strains of Escherichia coli of porcine origin. J Med Microbiol 3: 387–401, 1970.

    Article  PubMed  CAS  Google Scholar 

  154. Gyles CL: Relationships among heat-labile enterotoxins of Escherichia coli and Vibrio cholerae. J Infect Dis 129: 277–283, 1974.

    Article  PubMed  CAS  Google Scholar 

  155. Finkelstein RA: Laboratory production and isolation of enterotoxins and isolation of a candidate live vaccine for diarrheal disease, in Proceedings of the 43rd Nobel Symposium: Cholera and Related DiarrheasMolecular Aspects of a Global Health Problem, Stockholm, 1978. Basel, Switzerland, S. Karger, 1980, pp 64-79.

    Google Scholar 

  156. Dorner F: Escherichia coli enterotoxin purification and partial characterization. J Biol Chem 250: 8712–8719, 1975.

    PubMed  CAS  Google Scholar 

  157. Finkelstein RA, LaRue MK, Johnston DW, et al: Isolation and properties of heat-labile enterotoxin(s) from enterotoxigenic Escherichia coli. J Infect Dis 133(Suppl):S120–S137, 1976.

    Article  Google Scholar 

  158. Rappaport RS, Sagin JF, Pierzchala WA, et al: Activation of heat-labile Escherichia coli enterotoxin by trypsin. J Infect Dis 133(Suppl):S41–S54, 1976.

    Article  Google Scholar 

  159. Neill RJ, Ivins BE, Holmes RK: Synthesis and secretion of the plasmid-coded heat-labile enterotoxin of Escherichia coli in Vibrio cholerae. Science 221: 289–291, 1983.

    Article  PubMed  CAS  Google Scholar 

  160. Clements JD, Yancey RJ, Finkelstein RA: Properties of homogeneous heat-labile enterotoxin from Escherichia coli. Infect Immun 29: 91–97, 1980.

    PubMed  CAS  Google Scholar 

  161. Kunkel SV, Robertson DC: Purification and chemical characterization of the heat-labile enterotoxin produced by enterotoxigenic Escherichia coli. Infect Immun 25: 586–596, 1979.

    PubMed  CAS  Google Scholar 

  162. Dallas WS, Falkow S: Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature (London) 288: 499–501, 1980.

    Article  CAS  Google Scholar 

  163. Leong J, Vinal AC, Dallas WS: Nucleotide sequence comparison between heat-labile toxin B-subunit cistrons from Escherichia coli of human and porcine origin. Infect Immun 48: 73–77, 1985.

    PubMed  CAS  Google Scholar 

  164. Zinnaka Y, Carpenter CCJ: An enterotoxin produced by non-cholera vibrios. Johns Hopkins Med J 131: 403–411, 1972.

    PubMed  CAS  Google Scholar 

  165. Ohashi M, Shimada T, Fukumi H: In vitro production of enterotoxin and hemorrhagic principle by Vibrio cholerae, NAG. Japan J Med Sci Biol 25: 179–194, 1972.

    CAS  Google Scholar 

  166. Yamamoto K, Takeda Y, Miwatani T, et al: Purification and some properties of a npn-01 Vibrio cholerae enterotoxin that is identical to cholera enterotoxin. Infect Immun 39: 1128–1135, 1983.

    PubMed  CAS  Google Scholar 

  167. Yamamoto K, Takeda Y, Miwatani T, et al: Evidence that a non-01 Vibrio cholerae produces enterotoxin that is similar but not identical to cholera enterotoxin. Infect Immun 41: 896–901, 1983.

    PubMed  CAS  Google Scholar 

  168. Craig JP: The vibrio diseases in 1982, in Takeda Y, Miwatani T (eds): Bacterial Diarrheal Diseases. Boston, Martinus Nijhoff Publishers, 1985, pp 11–23.

    Chapter  Google Scholar 

  169. Finkelstein RA, Sobocinski PZ, Atthasampunna P, et al: Pathogenesis of experimental cholera: identification of choleragen (Procholeragen A) by disc immunoelectrophoresis and its differentiation from cholera mucinase. J Immunol 97: 25–33, 1966.

    PubMed  CAS  Google Scholar 

  170. Vasil ML, Holmes RK, Finkelstein RA: Studies on toxinogenesis in Vibrio cholerae. II. An in vitro test for enterotoxin production. Infect Immun 9: 195–197, 1974.

    PubMed  CAS  Google Scholar 

  171. Yamamoto T, Yokota T: Sequence of heat-labile enterotoxin of Escherichia coli pathogenic for humans. J Bacteriol 155: 728–733, 1983.

    PubMed  CAS  Google Scholar 

  172. Tsuji T, Honda T, Miwatani T, et al: Analysis of receptor-binding site in Escherichia coli enterotoxin. J Biol Chem 260: 8552–8558, 1985.

    PubMed  CAS  Google Scholar 

  173. Peterson JW: Salmonella toxin. Pharmacol Ther 11: 719–724, 1980.

    Article  PubMed  CAS  Google Scholar 

  174. Finkelstein RA, Marchlewicz BA, McDonald RJ, et al: Isolation and characterization of a cholera-related enterotoxin from Salmonella typhimurium. FEMS Microbiol Lett 17: 239–241, 1983.

    Article  CAS  Google Scholar 

  175. Stephen J, Wallis TS, Starkey WG, et al: Salmonellosis in retrospect and prospect, in Evered D. Whelan J (eds): Ciba Foundation Symposium 112: Microbial Toxins and Diarrheal Disease. London, Pitman Publishing Ltd, 1985, pp 175–192.

    Google Scholar 

  176. Peterson JW, Chopra AK, Prasad R, et al: Partial purification and characterization of cloned Salmonella enterotoxin, in: Proceedings of the 23rd Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, Williamsburg VA, National Institute of Allergy and Infectious Diseases, NIH, p. 85.

    Google Scholar 

  177. Spira WM, Fedorka-Cray PJ: Purification of enterotoxins from Vibrio mimicus that appear to be identical to cholera toxin. Infect Immun 45: 679–684, 1984.

    PubMed  CAS  Google Scholar 

  178. Shimada T, Sakazaki R, Horigome K, et al: Production of cholera-like enterotoxin by Aeromonas hydrophila. Jpn J Med Sci Biol 37: 141–144, 1984.

    PubMed  CAS  Google Scholar 

  179. Potomski J, Burke V, Robinson J, et al: Aeromonas cytotonic enterotoxin cross reactive with cholera toxin. J Med Micro 23: 179–186, 1987.

    Article  CAS  Google Scholar 

  180. Potomski J, Burke V, Watson I, et al: Purification of cytotoxic enterotoxin ofAeromonas sobria by use of monoclonal antibodies. J Med Micro 23: 171–177, 1987.

    Article  CAS  Google Scholar 

  181. Walker RI, Caldwell MB, Lee EC, et al: Pathophysiology of Campylobacter enteritis. Microbiol Rev 50: 81–94, 1986.

    PubMed  CAS  Google Scholar 

  182. Klipstein FA, Engert RF: Immunological interrelationships between cholera toxin and the heat-labile and heatstable enterotoxins of coliform bacteria. Infect Immun 18: 110–117, 1977.

    PubMed  CAS  Google Scholar 

  183. Holmes RK, Twiddy EM, Pickett CL: Purification and characterization of Type II heat-labile enterotoxin of Escherichia coli. Infect Immun 53: 464–473, 1986.

    PubMed  CAS  Google Scholar 

  184. Joo I: Cholera vaccines, in Barua D, Burrows W (eds): Cholera. Philadelphia, WB Saunders, 1974, pp 333–355.

    Google Scholar 

  185. Finkelstein RA: Immunology of cholera. Curr Top Microbiol Immunol 69: 137–196, 1975.

    Article  Google Scholar 

  186. Finkelstein RA: Immunology of Vibrio cholerae, in Nahmias AJ, O’Reilly RJ (eds): Comprehensive Immunology: Immunology of Human Infection. New York, Plenum Publishing Corp, 1981, pp 291–315.

    Chapter  Google Scholar 

  187. Feeley JC, Gangarosa EJ: in Ouchterlony Ö, Holmgren J (eds): Cholera and Related Diarrheas. Basel, S Karger, 1980, pp 204-210.

    Google Scholar 

  188. Finkelstein RA: Vaccines (?) against the cholera-related enterotoxin family. Microbiology 1985: 114–118, 1985.

    Google Scholar 

  189. Finkelstein RA: Dead vaccines are “alive” but live vaccines are not dead: analysis of options for immunization against cholera, in Holmgren J. Lindberg A, Mollby R (eds): Development of Vaccines and Drugs against Diarrhea, 11th Nobel Conference, Stockholm, 1985. Lund, Sweden Studentlitteratur, and Kent, England, Chartwell-Bratt Ltd, 1986, pp 74-81.

    Google Scholar 

  190. Cvjetanovic B: Economic considerations in cholera control, in Barua D, Burrows W (eds): Cholera. Philadelphia, WB Saunders, 1974, pp 435–445.

    Google Scholar 

  191. Finkelstein RA, Pongpairojana S: A test of antigenicity for the selection of strains for inclusion in cholera vaccines. Bull WHO 39: 247–259, 1968.

    PubMed  CAS  Google Scholar 

  192. Curlin G. Levine R, Aziz KMA, et al: Field trial of cholera toxoid, in: Proceedings of the 11th Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, 1975. 1976, pp 314-329.

    Google Scholar 

  193. Sciortino CV, Finkelstein RA: Vibrio cholerae express iron-regulated outer membrane proteins in vivo. Infect Immun 42: 990–996, 1983.

    PubMed  CAS  Google Scholar 

  194. Booth BA, Sciortino CV, Finkelstein RA: Adhesins of Vibrio cholerae, in Mirelman D (ed): Microbial Lectins and Agglutinins. New York, John Wiley and Sons, 1986, pp 169–182.

    Google Scholar 

  195. Booth BA, Dyer TJ, Finkelstein RA: Adherence of Vibrio cholerae to cultured human cells, in Sack RB, Zinnaka Y (eds): Advances in Research on Cholera and Related Diarrheas, Vol 7 Proceedings of the 23rd Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, Williamsburg VA, 1987. KTK Scientific Publishers, Tokyo, 1990, pp 19–35.

    Google Scholar 

  196. Kaper JB, Levine MM, Lockman HA, et al: Development and testing of a recombinant live oral cholera vaccine, in: Vaccines 85. Cold Spring Harbor NY, Cold Spring Harbor Laboratory, 1985, pp 107-111.

    Google Scholar 

  197. Levine MM, Kaper JB, Morris JG, et al: Reactogenicity, colonizing capacity, and immunogenicity of further attenuated, genetically engineered Vibrio cholerae 01 vaccine strains, in Kuwahara S, Pierce NF (eds.): Advances in Research on Cholera and related Diarrheas, Proceedings of the 21st Joint Conference on Cholera, US-Japan Cooperative Medical Science Program, Bethesda MD, 1985. Tokyo, KTK Scientific Publishers, pp 225-230, 1988.

    Google Scholar 

  198. Cash RA, Music SI, Libonati JP, et al: Response of man to infection with Vibrio cholerae. II. Protection from illness afforded by previous disease and vaccine. J Infect Dis 130: 325–333, 1974.

    Article  PubMed  CAS  Google Scholar 

  199. Owen RL, Pierce NF, Apple RT, et al: M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: a mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153: 1108–1118, 1986.

    Article  PubMed  CAS  Google Scholar 

  200. Svennerholm A-M, Holmgren J: Synergistic protective effect in rabbits of immunization with Vibrio cholerae lipopolysaccharide and toxin/toxoid. Infect Immun 13: 735–740, 1976.

    PubMed  CAS  Google Scholar 

  201. Rappaport RS, Bonde G: Development of a vaccine against experimental cholera and Escherichia coli diarrheal disease. Infect Immun 32: 534–542, 1981.

    PubMed  CAS  Google Scholar 

  202. Clemens JD, Sack DA, Harris JR, et al: Field trial of oral cholera vaccines in Bangladesh. Lancet II: 124–127, 1986.

    Article  Google Scholar 

  203. Clemens JD, Harris JR, Sack DA, et al: Field trial of oral cholera vaccines in Bangladesh: results of one year of follow-up. J Infect Dis 158: 60–69, 1988.

    Article  PubMed  CAS  Google Scholar 

  204. Fujita K, Finkelstein RA: Antitoxic immunity in experimental cholera: comparison of immunity induced perorally and parenterally in mice. J Infect Dis 125: 647–655, 1972.

    Article  PubMed  CAS  Google Scholar 

  205. Holmgren J: Experimental studies on cholera immunisation: the protective immunogenicity in rabbits of monomeric and polymeric crude exotoxin. J Med Microbiol 6: 363–370, 1973.

    Article  PubMed  CAS  Google Scholar 

  206. Germanier R, Fürer E, Varallyay S, et al: Preparation of a purified antigenic cholera toxoid. Infect Immun 13: 1692–1698, 1976.

    PubMed  CAS  Google Scholar 

  207. Peterson JW: Protection against experimental cholera by oral or parenteral immunization. Infect Immun 26: 594–598, 1979.

    PubMed  CAS  Google Scholar 

  208. Fürer E, Cryz SJ Jr, Dorner F, et al: Protection against colibacillosis in neonatal piglets by immunization of dams with procholeragenoid. Infect Immun 35: 887–894, 1982.

    PubMed  Google Scholar 

  209. Pierce NF, Cray WC Jr, Sacci JB Jr, et al: Procholeragenoid: a safe and effective antigen for oral immunization against experimental cholera. Infect Immun 40: 1112–1118, 1983.

    PubMed  CAS  Google Scholar 

  210. Finkelstein RA, Hollingsworth RC: Antitoxic immunity in experimental cholera: observations with purified antigens and the rat foot edema model. Infect Immun 1: 468–473, 1970.

    PubMed  CAS  Google Scholar 

  211. Northrup RS, Fauci AS: Adjuvant effect of cholera enterotoxin on the immune response of the mouse to sheep red blood cells. J Infect Dis 125: 672–673, 1972.

    Article  PubMed  CAS  Google Scholar 

  212. Finkelstein RA, Sciortino CV, Rieke LC, et al: Preparation of “procoligenoids” from Escherichia coli heat-stable enterotoxins (LTs). Infect Immun 45: 518–521, 1984.

    PubMed  CAS  Google Scholar 

  213. Klipstein FA, Engert RF, Houghten RA: Protection in rabbits immunized with a vaccine of Escherichia coli heat-stable toxin cross-linked to the heat-labile toxin B subunit. Infect Immun 40: 888–893, 1983.

    PubMed  CAS  Google Scholar 

  214. Germanier R: Typhoid fever, in Germanier R (ed): Bacterial Vaccines. New York, Academic Press Inc, 1984, pp 137–165.

    Chapter  Google Scholar 

  215. Boesman-Finkelstein M, Sciortino CV, Finkelstein RA: Iron-related antibacterial activities of human milk, in Spik G, Montreuil J, Crichton JJ, Mazurier J (eds): Proteins of Iron Storage and Transport. Elsevier, Netherlands, Elsevier Science Publishers, 1985, pp 251–260.

    Google Scholar 

  216. Boesman-Finkelstein M, Finkelstein RA: Antimicrobial effects of human milk: inhibitory activity on enteric pathogens. FEMS Lett 27: 167–174, 1985.

    Article  CAS  Google Scholar 

  217. Dolan SA, Boesman-Finkelstein M, Finkelstein RA: Antimicrobial activity of human milk against pediatric pathogens. J Infect Dis 154: 722–725, 1986.

    Article  PubMed  CAS  Google Scholar 

  218. Dolan SA, Boesman-Finkelstein M, Finkelstein RA: Inhibition of enteropathogenic bacteria in human milk whey in vitro. Pediatr Infect Dis J 8: 430–436, 1989.

    Article  PubMed  CAS  Google Scholar 

  219. Boesman-Finkelstein M, Watson NE, Finkelstein RA: Bovine lactogenic immunity against cholera toxin-related enterotoxins and Vibrio cholerae outer membrane. Infect Immun 57: 1227–1234, 1989.

    PubMed  CAS  Google Scholar 

  220. McClead RE, Gregory SA: Resistance of bovine colostral anti-cholera toxin antibody to in vitro and in vivo proteolysis. Infect Immun 44: 474–478, 1984.

    PubMed  CAS  Google Scholar 

  221. Brüssow H, Hilpert H, Walther I, et al: Bovine milk immunoglobulins for passive immunity to infantile rotavirus gastroenteritis. J Clin Microbiol 25: 982–986, 1987.

    PubMed  Google Scholar 

  222. Hilpert H, Brüssow H, Mietens C, et al: Use of bovine milk concentrate containing antibody to rotavirus to treat rotavirus gastroenteritis in infants. J Infect Dis 156: 158–166, 1987.

    Article  PubMed  CAS  Google Scholar 

  223. Tacket CO, Herrington DA, Lonsonsky G, et al: Protection by milk immunoglobulin concentrate against oral challenge with enterotoxigenic Escherichia coli, N Engl J Med 318: 1240–1243, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Finkelstein, R.A. (1992). Cholera Enterotoxin (Choleragen). In: Barua, D., Greenough, W.B. (eds) Cholera. Current Topics in Infectious Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9688-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9688-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9690-2

  • Online ISBN: 978-1-4757-9688-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics