Cholera pp 69-94 | Cite as

Genetics

  • James B. Kaper
  • Mary M. Baldini
Part of the Current Topics in Infectious Disease book series (CTID)

Abstract

The genetic organization of Vibrio cholerae 01 has been investigated by a variety of classical and molecular genetic techniques. The genetic complement of this species includes plasmids, bacteriophage, and insertion sequences; however, all virulence factors so far examined are encoded on a chromosome of ca. 2.8 × 103 kb.1 The basic features of gene structure, transcription, translation, regulation, and genetic exchange are similar to those found in common enteric bacteria, and V. cholerae 01 readily exchanges genetic information via conjugative plasmids with these organisms.2,3

Keywords

Cholera Toxin Outer Membrane Protein Vibrio Cholerae Classical Strain hlyA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nishibuchi M, Muroga K, Seidler RJ, Fryer JL: Pathogenic Vibrio isolated from cultured eels-IV. Bull Jap Soc Sci Fish 45: 1469–1473, 1979.CrossRefGoogle Scholar
  2. 2.
    Baron LS, Falkow S: Genetic transfer of episomes from Salmonella typhosa to Vibrio cholerae? Genetics 46: 849, 1961.Google Scholar
  3. 3.
    Kuwahara S, Akiba T, Koyama K, Arai T: Transmission of multiple drug-resistance from Shigella flexneri to Vibrio comma through conjugation. Jpn J Microbiol 7: 61–67, 1963.Google Scholar
  4. 4.
    Bhaskaran K: Genetic recombination in Vibrio cholerae. J Gen Microbiol 19: 71–75, 1958.PubMedCrossRefGoogle Scholar
  5. 5.
    Bhaskaran K, Dyer PY, Rogers GE: Sex pili in Vibrio cholerae. Australian. J Exp Biol Med Sci 47: 647–650, 1969.CrossRefGoogle Scholar
  6. 6.
    Sublett RD, Romig WR: Transposon-facilitated recombination in classical biotypes of Vibrio cholerae. Infect Immun 32: 1132–1138, 1981.PubMedGoogle Scholar
  7. 7.
    Parker C, Romig WR: Self-transfer and genetic recombination mediated by P, the sex factor of Vibrio cholerae. J Bacteriol 112: 707–714, 1972.PubMedGoogle Scholar
  8. 8.
    Datta A, Parker CD, Wohlhieter JA, Baron LS: Isolation and characterization of the fertility factor P of Vibrio cholerae. J Bacteriol 113: 763–771, 1973.PubMedGoogle Scholar
  9. 9.
    Bartowsky EJ, Morelli G, Kamke M, Manning PA: Characterization and restriction analysis of the P sex factor and the cryptic plasmid of Vibrio cholerae strain V58. Plasmid 18: 1–7, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Bartowsky EJ, Manning PA: Molecular cloning of the plasmids of Vibrio cholerae and the incidence of related plasmids in clinical isolates and other Vibrio species. FEMS Microbiol Lett 50: 183–190, 1988.CrossRefGoogle Scholar
  11. 11.
    Sinha VB, Srivastava BS: Suppression of pathogenicity by P and V plasmids in Vibrio cholerae. J Gen Microbiol 104: 251–255, 1978.PubMedCrossRefGoogle Scholar
  12. 12.
    Bhaskaran, K: Segregation of genetic factors during recombination in Vibrio cholerae, strain 162. WHO Bull 30: 845–853, 1964.Google Scholar
  13. 13.
    Parker C, Gauthier D, Tate A, et al: Expanded linkage map of Vibrio cholerae. Genetics 91: 191–214, 1979.PubMedGoogle Scholar
  14. 14.
    Johnson SR, Romig WR: Transposon-facilitated recombination in Vibrio cholerae. Molec Gen Genet 170: 93–101, 1979.PubMedGoogle Scholar
  15. 15.
    Johnson SR, Sublett R, Romig WR: Transposon-facilitated recombination in Vibrio cholerae: genetic mapping of El Tor and classical biotypes, in Proceedings of the Fifteenth Joint Conference on Cholera, U. S.-Japan Cooperative Medical Science Program, U.S. Dept. of Health, Education and Welfare, Bethesda, Maryland, 1979, pp 401-414.Google Scholar
  16. 16.
    Johnson SR, Romig WR: Vibrio cholerae conjugative plasmid pSJ15 contains transposable prophage dVcAl. J Bacteriol 146: 632–638, 1981.PubMedGoogle Scholar
  17. 17.
    Johnson SR, Liu BCS, Schreiber D, Romig WR: Properties of the related transposable phage VcAl and defective prophage dVcAl in El Tor and classical biotypes of Vibrio cholerae, in Kuwahara S, Pierce NF (eds): Advances in Research on Cholera and Related Diarrheas, Vol. 1, Tokyo, KTK Scientific Publishers, 1983, pp 171–182.CrossRefGoogle Scholar
  18. 18.
    Newland JW, Green BA, Holmes RK: Transposon-mediated mutagenesis and recombination in Vibrio cholerae. Infect Immun 45: 428–432, 1984.PubMedGoogle Scholar
  19. 19.
    Richardson K, Nixon L, Mostow L, et al: Transposon-induced non-motile mutants of Vibrio cholerae. J Gen Microbiol 136: 717–725, 1990.PubMedCrossRefGoogle Scholar
  20. 20.
    Harkki A, Hirst TR, Holmgren J, Palva ET: Expression of the Escherichia coli lamB gene in Vibrio cholerae. Microbial Pathogenesis 1: 283–288, 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Taylor RK, Manoil C, Mekalanos JJ: Broad-host-range vectors for delivery of TnphoA: Use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J Bacteriol 171: 1870–1878, 1989.PubMedGoogle Scholar
  22. 22.
    Bhaskaran K, Sinha VB: Transmissible plasmid factors and fertility inhibition in Vibrio cholerae. J Gen Microbiol 69: 89–97, 1971.PubMedCrossRefGoogle Scholar
  23. 23.
    Bhaskaran K: Recent studies on genetic recombination in Vibrio cholerae. Prog Drug Res 19: 460–465, 1975.PubMedGoogle Scholar
  24. 24.
    Smigocki AC, Voll MJ: Novel transmissible factors in a non-01 Vibrio cholerae and a Vibrio sp. J Gen Microbiol 132: 1027–1033, 1986.PubMedGoogle Scholar
  25. 25.
    Ogg JE, Shrestha MB, Poudayl L: Phage-induced changes in Vibrio cholerae: Serotype and biotype conversions. Infect Immun 19: 231–238, 1978.PubMedGoogle Scholar
  26. 26.
    Ogg JE, Timme TL, Alemohammad MM: General transduction in Vibrio cholerae. Infect Immun 31: 737–741, 1981.PubMedGoogle Scholar
  27. 27.
    Schreiber DB: Genetic organization in Vibrio cholerae: Tryptophan genes and phage VcAl. Los Angeles, University of California, Dissertation, 1984.Google Scholar
  28. 28.
    Ogg JE, Ogg BJ, Shrestha MB, Poudayl L: Antigenic changes in Vibrio cholerae biotype eltor serotype Ogawa after bacteriophage infection. Infect Immun 24: 974–978, 1979.PubMedGoogle Scholar
  29. 29.
    Manning PA: Molecular genetic approaches to the study of Vibrio cholerae. Microbiol Sci 5: 196–201, 1988.PubMedGoogle Scholar
  30. 30.
    Hamood AN, Sublett RD, Parker CD: Plasmid-mediated changes in virulence of Vibrio cholerae. Infect Immun 52: 476–483, 1986.PubMedGoogle Scholar
  31. 31.
    Marcus H, Ketley JM, Kaper JB, Holmes RK: Effects of DNase production, plasmid size, and restriction barriers on transformation of Vibrio cholerae by electroporation and osmotic shock. FEMS Microbiol Lett 68: 149–154, 1990.CrossRefGoogle Scholar
  32. 32.
    Cook WL, Wachsmuth K, Johnson SR, Birkness KA, Samadi AR: Persistence of plasmids, cholera toxin genes, and prophage DNA in classical Vibrio cholerae 01. Infect Immun 45: 222–226, 1984.PubMedGoogle Scholar
  33. 33.
    Newland JW, Voll MJ, McNicol LA: Serology and plasmid carriage in Vibrio cholerae. Can J Microbiol 30: 1149–1156, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Hedges RW, Vialard JL, Pearson NJ, O’Grady F: R plasmids from Asian strains of Vibrio cholera. Antimicrob Agents Chemother 11: 585–588, 1977.PubMedCrossRefGoogle Scholar
  35. 35.
    Yokota T, Kuwahara S: Temperature-sensitive R plasmids obtained from naturally isolated drug-resistant Vibrio cholerae (biotype El Tor). Antimicrob Agents Chemother 11: 13–20, 1977.PubMedCrossRefGoogle Scholar
  36. 36.
    Rahal K, Gerbaud G, Bouanchaud DH: Stability of R plasmids belonging to different incompatibility groups in Vibrio cholerae. Ann Microbiol 129A: 409–414, 1978.Google Scholar
  37. 37.
    Threlfall EJ, Rowe B, Huq I: Plasmid-encoded multiple antibiotic resistance in Vibrio cholerae El Tor from Bangladesh. Lancet i: 1247–1248, 1980.CrossRefGoogle Scholar
  38. 38.
    Levy SB: Resistance to the tetracyclines, in Bryan LE (ed): Antimicrobial Drug Resistance, Orlando, Academic Press, Inc, 1978, pp 192–240.Google Scholar
  39. 39.
    Young HK, Amyes SGB: Plasmid trimethoprim resistance in Vibrio cholerae: migration of the type I dihydrofo-late reductase gene out of the Enterobacteriaceae. J Antimicrob Chemother 17: 697–703, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    Johnson SR, Liu BCS, Romig WR: Auxotrophic mutations induced by Vibrio cholerae mutator phage VcAl. FEMS Microbiol Lett 11: 13–16, 1981.CrossRefGoogle Scholar
  41. 41.
    Goldberg S, Murphy JR: Molecular epidemiological studies of United States Gulf Coast Vibrio cholerae strains: Integration site of mutator vibriophage VcA-3. Infect Immun 42: 224–230, 1983.PubMedGoogle Scholar
  42. 42.
    Mekalanos JJ, Moseley SL, Murphy JR, Falkow S: Isolation of enterotoxin structural gene deletion mutations in Vibrio cholerae induced by two mutagenic vibriophages. Proc Natl Acad Sci USA 79: 151–155, 1982.PubMedCrossRefGoogle Scholar
  43. 43.
    Goldstein F, Gerbaud G, Courvalin P: Transposable resistance to trimethoprim and 0/129 in Vibrio cholerae. J Antimicrob Chemother 17: 559–569, 1986.PubMedCrossRefGoogle Scholar
  44. 44.
    Mekalanos J: Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35: 253–263, 1983.PubMedCrossRefGoogle Scholar
  45. 45.
    Betley MJ, Miller VL, Mekalanos JJ: Genetics of bacterial enterotoxins. Ann Rev Microbiol 40: 577–605, 1986.CrossRefGoogle Scholar
  46. 46.
    Ginzburg AL, Yanishevsky NV, Motin, VL, et al: Nature of RSl sequences flanking the vct gene coding for cholera toxin synthesis in Vibrio cholerae El Tor. Mol Genet Mikrobiol Virusol (USSR) no. 2, 11-19, 1986.Google Scholar
  47. 47.
    Kaper JB, Levine MM: Cloned cholera enterotoxin genes in study and prevention of cholera. Lancet ii: 1162–1163, 1981.CrossRefGoogle Scholar
  48. 48.
    Pearson GDN, Mekalanos JJ: Molecular cloning of Vibrio cholerae enterotoxin genes in Escherichia coli K-12. Proc Natl Acad Sci USA 79: 2976–2980, 1982.PubMedCrossRefGoogle Scholar
  49. 49.
    Gennaro ML, Greenaway PJ, Broadbent DA: The expression of biologically active cholera toxin in Escherichia coli. Nucleic Acids Res 10: 4883–4890, 1982.PubMedCrossRefGoogle Scholar
  50. 50.
    Moseley SL, Falkow S: Nucleotide sequence homology between the heat-labile enterotoxin gene of Escherichia coli and Vibrio cholerae. J Bacteriol 144: 444–446, 1980.PubMedGoogle Scholar
  51. 51.
    Lockman HA, Galen JE, Kaper JB: Vibrio cholerae enterotoxin genes: Nucleotide sequence analysis of DNA encoding ADP-ribosyltransferase. J Bacteriol 159: 1086–1089, 1984.PubMedGoogle Scholar
  52. 52.
    Lockman H, Kaper JB: Nucleotide sequence analysis of the A2 and B subunits of Vibrio cholerae enterotoxin. J Biol Chem 258: 13722–13726, 1983.PubMedGoogle Scholar
  53. 53.
    Mekalanos JJ, Swartz DJ, Pearson GDN, et al: Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306: 551–557, 1983.PubMedCrossRefGoogle Scholar
  54. 54.
    Yamamoto T, Gojobori T, Yokota T: Evolutionary origin of pathogenic determinants in enterotoxigenic Escherichia coli and Vibrio cholerae 01. J Bacteriol 169: 1352–1357, 1987.PubMedGoogle Scholar
  55. 55.
    Neill RJ, Ivins BE, Holmes RK: Synthesis and secretion of the plasmid-coded heat-labile enterotoxin of Escherichia coli in Vibrio cholerae. Science 221: 289–290, 1983.PubMedCrossRefGoogle Scholar
  56. 56.
    Miller VL, Mekalanos JJ: Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA 81: 3471–3475, 1984.PubMedCrossRefGoogle Scholar
  57. 57.
    Smith HW, Halls S: The transmissible nature of the genetic factor in Escherichia coli that controls enterotoxin production. J Gen Microbiol 52: 319–334, 1968.CrossRefGoogle Scholar
  58. 58.
    Sporecke I, Castro D, Mekalanos J: Genetic mapping of Vibrio cholerae enterotoxin structural genes. J Bacteriol 157: 253–261, 1984.PubMedGoogle Scholar
  59. 59.
    Sanchez J, Holmgren J: Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development. Proc Nad Acad Sci USA 86: 481–485, 1989.CrossRefGoogle Scholar
  60. 60.
    Holmes RK, Vasil ML, Finkelstein RA: Studies on toxinogenesis in Vibrio cholerae. J Clin Invest 55: 551–560, 1975.PubMedCrossRefGoogle Scholar
  61. 61.
    Miller VL, Mekalanos JJ: Genetic analysis of the cholera toxin-positive regulatory gene toxR. J Bacteriol 163: 580–585, 1985.PubMedGoogle Scholar
  62. 62.
    Baine WB, Vasil ML, Holmes RK: Genetic mapping of mutations in independently isolated nontoxinogenic mutants of Vibrio cholerae. Infect Immun 21: 194–200, 1978.PubMedGoogle Scholar
  63. 63.
    Miller VL, Taylor RK, Mekalanos JJ: Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 48: 271–279, 1987.PubMedCrossRefGoogle Scholar
  64. 64.
    Miller JF, Mekalanos JJ, Falkow S: Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 243: 916–922, 1989.PubMedCrossRefGoogle Scholar
  65. 65.
    Taylor RK, Miller VL, Furlong DB, Mekalanos JJ: Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84: 2833–2837, 1987.PubMedCrossRefGoogle Scholar
  66. 66.
    Peterson KM, Mekalanos JJ: Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 56: 2822–2829, 1988.PubMedGoogle Scholar
  67. 67.
    Miller VL, Mekalanos JJ: A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170: 2575–2583, 1988.PubMedGoogle Scholar
  68. 68.
    Miller VL, DiRita VJ, Mekalanos JJ: Identification of toxS, a regulatory gene whose product enhances ToxRmediated activation of the cholera toxin promoter. J Bacteriol 171: 1288–1293, 1989.PubMedGoogle Scholar
  69. 69.
    DiRita VJ, Mekalanos JJ: Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 64: 29–37, 1991.PubMedCrossRefGoogle Scholar
  70. 69a.
    DiRita VJ, Parsot C, Jander G, Mekalanos JJ: Regulatory cascade controls virulence in Vibrio cholerae. Proc Nad Acad Sci USA 88: 5403–5407, 1991.CrossRefGoogle Scholar
  71. 70.
    Neidhardt FC, VanBogelen RA: Heat shock response, in Neidhardt FC, Ingraham JL, Low KB, et al (eds): Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Washington DC, American Society for Microbiology, 1987, pp 1334–1345.Google Scholar
  72. 71.
    Parsot C, Mekalanos JJ: Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response. Proc Natl Acad Sci USA 87: 9898–9902, 1990.PubMedCrossRefGoogle Scholar
  73. 72.
    Herrington DA, Hall R, Losonsky G, et al: Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168: 1487–1492, 1988.PubMedCrossRefGoogle Scholar
  74. 73.
    Mekalanos JJ, Sublett RD, Romig WR: Genetic mapping of toxin regulatory mutations in Vibrio cholerae. J Bacteriol 139: 859–865, 1979.PubMedGoogle Scholar
  75. 74.
    Mekalanos JJ, Murphy JR: Regulation of cholera toxin production in Vibrio cholerae: genetic analysis of phenotypic instability in hypertoxinogenic mutants. J Bacteriol 141: 570–576, 1980.PubMedGoogle Scholar
  76. 75.
    Saunders DW, Bramucci MG: Genetic mapping of the tox-1000 locus of Vibrio cholerae El Tor strain RJ1. Infect Immun 40: 829–831, 1983.PubMedGoogle Scholar
  77. 76.
    Khan AA, Srivastava R, Sinha VB, Srivastava BS: Regulation of toxin biosynthesis by plasmids in Vibrio cholerae. J Gen Microbiol 131: 2653–2657, 1985.PubMedGoogle Scholar
  78. 77.
    Bartowsky EJ, Attridge SR, Thomas CJ, et al: Role of the P plasmid in attenuation of Vibrio cholerae 01. Infect Immun 58: 3129–3134, 1990.PubMedGoogle Scholar
  79. 78.
    Goldberg I, Mekalanos JJ: Effect of a recA mutation on cholera toxin gene amplification and deletion events. J Bacteriol 165: 723–731, 1986.PubMedGoogle Scholar
  80. 79.
    Mekalanos JJ: Cholera toxin: Genetic analysis, regulation, and role in pathogenesis. Curr Top Microbiol Immunol 118: 97–118, 1985.PubMedCrossRefGoogle Scholar
  81. 80.
    Kaper JB, Moseley SL, Falkow S: Molecular characterization of environmental and nontoxigenic strains of Vibrio cholerae. Infect Immun 32: 661–667, 1981.PubMedGoogle Scholar
  82. 81.
    Morris JG Jr, Picardi JL, Lieb S, et al: Isolation of nontoxigenic Vibrio cholerae 0 group 1 from a patient with severe gastrointestinal disease. J Clin Micro 19: 296–297, 1984.Google Scholar
  83. 82.
    Goldberg S, Murphy JR: Molecular epidemiological studies of United States Gulf Coast Vibrio cholerae strains: integration site of mutator vibriophage VcA-3. Infect Immun 42: 224–230, 1983.PubMedGoogle Scholar
  84. 83.
    Pearson GDN, Mekalanos JJ: Recombination and replication activities of RSl, a repetitive sequence associated with the cholera toxin genetic element, in: Abstracts of the Twenty Fifth Joint Conference on Cholera, U.S.-Japan Cooperative Medical Science Program, Grand Canyon, AZ, 1989, pp 23–24.Google Scholar
  85. 84.
    Focareta T, Manning PA: Molecular cloning of a possible excretion protein of Vibrio cholerae. FEMS Microbiol Lett 29: 161–166, 1985.CrossRefGoogle Scholar
  86. 85.
    Goldberg SL, Murphy JR: Molecular cloning of the hemolysin determinant from Vibrio cholerae El Tor. J Bact 160: 239–244, 1984.PubMedGoogle Scholar
  87. 86.
    Manning PA, Brown MH, Heuzenroeder MW: Cloning of the structural gene (hly) for the haemolysin of Vibrio cholerae El Tor strain 017. Gene 31: 225–231, 1984.PubMedCrossRefGoogle Scholar
  88. 87.
    Kaper JB, Mobley HLT, Michalski JM, et al: Recent advances in developing a safe and effective live oral attenuated Vibrio cholerae vaccine, in Ohtomo N, Sack RB (eds): Advances in Research on Cholera and Related Diarrheas, Vol. 6, Tokyo, KTK Scientific Publishers, 1988, pp 161–167.Google Scholar
  89. 88.
    Yamamoto K, Ichinose Y, Shinagawa H, et al: Two-step processing for activation of the cytolysin/hemolysin of Vibrio cholerae 01 biotype El Tor: Nucleotide sequence of the structural gene (hlA) and characterization of the processed products. Infect Immun 58: 4106–4116, 1990.PubMedGoogle Scholar
  90. 89.
    Rader AE, Murphy JR: Nucleotide sequences and comparison of the hemolysin determinants of Vibrio cholerae El Tor RV79 (Hly +) and RV79 (Hly) and classical 569B (Hly). Infect Immun 56: 1414–1419, 1988.PubMedGoogle Scholar
  91. 90.
    Alm RA, Stroeher UH, Manning PA: Extracellular proteins of Vibrio cholerae: nucleotide sequence of the structural gene (hlyA) for the haemolysin of the haemolytic El Tor strain 017 and characterization of the hlyA mutation in the non-haemolytic classical strain 569B. Molec Microbiol 2: 481–488, 1988.CrossRefGoogle Scholar
  92. 91.
    Hall RH, Drasar BS: Vibrio cholerae hlyA hemolysin is processed by proteolysis. Infect Immun 58: 3375–3379, 1990.PubMedGoogle Scholar
  93. 92.
    Yamamoto K, Wright AC, Kaper JB, Morris JG: The cytolysin gene of Vibrio vulnificus: sequence and relationship to the Vibrio cholerae El Tor hemolysin gene. Infect Immun 58: 2706–2709, 1990.PubMedGoogle Scholar
  94. 93.
    Green BA, Newland JW, Holmes RK: Mapping of chromosomal genes that determine the El Tor biotype in Vibrio cholerae. Infect Immun 42: 924–929, 1983.PubMedGoogle Scholar
  95. 94.
    Levine MM, Kaper JB, Herrington D, et al: Volunteer studies of deletion mutants of Vibrio cholerae 01 prepared by recombinant techniques. Infect Immun 56: 161–167, 1988.PubMedGoogle Scholar
  96. 95.
    Brown MH, Manning PA: Haemolysin genes of Vibrio cholerae: presence of homologous DNA in nonhaemolytic 01 and haemolytic non-01 strains. FEMS Microbiol Lett 30: 197–201, 1985.CrossRefGoogle Scholar
  97. 96.
    Alm RA, Manning PA: Biotype-specific probe for Vibrio cholerae serogroup 01. J Clin Microbiol 28: 823–824, 1990.PubMedGoogle Scholar
  98. 97.
    Richardson K, Michalski J, Kaper JB: Hemolysin production and cloning of two hemolysin determinants from classical Vibrio cholerae. Infect Immun 54: 415–420, 1986.PubMedGoogle Scholar
  99. 98.
    Goldberg SL, Murphy JR: Cloning and characterization of the hemolysin determinants from Vibrio Cholerae RV79 (Hly +), RV79 (Hly), and 569B. J Bacteriol 162: 35–41, 1985.PubMedGoogle Scholar
  100. 99.
    Alm RA, Manning PA: Characterization of the hlyB gene and its role in the production of the El Tor haemolysin of Vibrio cholerae 01. Molec Microbiol 4: 413–425, 1990.CrossRefGoogle Scholar
  101. 100.
    Mechow S, Vaidya AB, Bramucci MG: Mapping of a gene that regulates hemolysin production in Vibrio cholerae. J Bacteriol 163: 799–802, 1985.Google Scholar
  102. 101.
    Stoebner JA, Payne SM: Iron-regulated hemolysin production and utilization of heme and hemoglobin by Vibrio cholerae. Infect Immun 56: 2891–2895, 1988.PubMedGoogle Scholar
  103. 102.
    Nishibuchi M, Khaeomanee-iam V, Honda T, et al: Comparative analysis of the hemolysin genes of Vibrio cholerae non-01, V. mimicus, and V. hollisae that are similar to the tdh gene of V. parahaemolyticus. FEMS Microbiol Lett 67: 251–256, 1990.CrossRefGoogle Scholar
  104. 103.
    Manning PA, Heuzenroeder MW, Yeadon J, et al: Molecular cloning and expression in Escherichia coii K-12 of the O antigens of the Inaba and Ogawa serotypes of the Vibrio cholerae 01 lipopolysaccharides and their potential for vaccine development. Infect Immun 53: 272–277, 1986.PubMedGoogle Scholar
  105. 104.
    Morelli G, Ward HM, Kamke M, et al: A physical map of the chromosomal region determining O-antigen biosynthesis in Vibrio cholerae 01. Gene 55: 197–204, 1987.PubMedCrossRefGoogle Scholar
  106. 104a.
    Morona R, Matthews MS, Morona JK, Brown MH: Regions of the cloned Vibrio cholerae rfb genes needed to determine the Ogawa form of the O-antigen. Mol Gen Genet 224: 405–412, 1990.PubMedCrossRefGoogle Scholar
  107. 105.
    Taylor R, Shaw C, Peterson K, Spears P, Mekalanos J: Safe, live Vibrio cholerae vaccines? Vaccine 6: 151–154, 1988.PubMedCrossRefGoogle Scholar
  108. 106.
    Uhlin BE, Norgren M, Baga M, Normark S: Adhesion to human cells by Escherichia coli lacking the major subunit of a digalactoside-specific pilus-adhesin. Proc Natl Acad Sci USA 82: 1800–1804, 1985.PubMedCrossRefGoogle Scholar
  109. 107.
    Shaw CE, Taylor RK: Vibrio cholerae 0395 tcpA pilin gene sequence and comparison of predicted protein structural features of those to type 4 pilins. Infect Immun 58: 3042–3049, 1990.PubMedGoogle Scholar
  110. 108.
    Sun D, Mekalanos JJ, Taylor RK: Antibodies directed against the toxin-coregulated pilus isolated from Vibrio cholerae provide protection in the infant mouse experimental cholera model. J Infect Dis 161: 1231–1236, 1990.PubMedCrossRefGoogle Scholar
  111. 109.
    Sun D, Tillman DM, Marion TN, Taylor RK: Production and characterization of monoclonal antibodies to the toxin coregulated pilus (TCP) of Vibrio cholerae that protect against experimental cholera in infant mice. Serodiagnosis and Immunotherapy in Infectious. Diseases 4: 73–81, 1990.Google Scholar
  112. 110.
    Faast R, Ogierman MA, Stroeher UH, Manning PA: Nucleotide sequence of the structural gene, tcpA, for a major pilin subunit of Vibrio cholerae. Gene 85: 227–231, 1989.PubMedCrossRefGoogle Scholar
  113. 111.
    Hall RH, Vial PA, Kaper JB, Mekalanos JJ, Levine MM: Morphological studies on fimbriae expressed by Vibrio cholerae 01. Microbial Pathogen 4: 257–265, 1988.CrossRefGoogle Scholar
  114. 112.
    Sharma DP, Stroeher UH, Thomas CJ, et al: The toxin-coregulated pilus (TCP) of Vibrio cholerae: molecular cloning of genes involved in pilus biosynthesis and evaluation of TCP as a protective antigen in the infant mouse model. Microbial Pathogen 7: 437–448, 1989.CrossRefGoogle Scholar
  115. 113.
    Srivastava R, Srivastava BS: Isolation of a non-adhesive mutant of Vibrio cholerae and chromosomal localization of the gene controlling mannose-sensitive adherence. J Gen Microbiol 117: 275–278, 1980.PubMedGoogle Scholar
  116. 114.
    Srivastava R, Khan AA, Srivastava BS: Immunological detection of cloned antigenic genes of Vibrio cholerae in Escherichia coli. Gene 40: 267–272, 1985.PubMedCrossRefGoogle Scholar
  117. 115.
    Franzon VL, Manning PA: Molecular cloning and expression in Escherichia coli K-12 of the gene for a hemagglutinin from Vibrio cholerae. Infect Immun 52: 279–284, 1986.PubMedGoogle Scholar
  118. 116.
    Van Dongen WMAM, De Graaf FK: Molecular cloning of a gene coding for a Vibrio cholerae haemagglutinin. J Gen Microbiol 132: 2225–2234, 1986.PubMedGoogle Scholar
  119. 117.
    Häse CC, Finkelstein RA: Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J Bacteriol 173: 3311–3317, 1991.PubMedGoogle Scholar
  120. 118.
    Stevenson G, Leavesley DI, Lagnado CA, et al: Purification of the 25-kDa Vibrio cholera major outer-membrane protein and the molecular cloning of its gene: ompV. Eur J Biochem 148: 385–390, 1985.PubMedCrossRefGoogle Scholar
  121. 119.
    Pohlner J, Meyer TF, Jalajakumari MB, Manning PA: Nucleotide sequence of ompV, the gene for a major Vibrio cholerae outer membrane protein. Molec Gen Genet 205: 494–500, 1986.PubMedCrossRefGoogle Scholar
  122. 120.
    Manning PA, Bartowsky EJ, Leavesly DI, et al: Molecular cloning using immune sera of a 22-kDa minor outer membrane protein of Vibrio cholerae. Gene 34: 95–103, 1985.PubMedCrossRefGoogle Scholar
  123. 121.
    Jalajakumari MB, Manning PA: Nucleotide sequence of the gene, ompW, encoding a 22 kDa immunogenic outer membrane protein of Vibrio cholerae. Nucleic Acids Res 18: 2180, 1990.PubMedCrossRefGoogle Scholar
  124. 122.
    Stewart-Tull DES, Ollar RA, Scobie TS: Studies on the Vibrio cholerae mucinase complex. I. Enzymatic activities associated with the complex. J Med Microbiol 22: 325–333, 1986.PubMedCrossRefGoogle Scholar
  125. 123.
    Vimr ER, Lawrisuk L, Galen J, Kaper JB: Cloning and expression of Vibrio cholerae neuraminidase gene nanH in Escherichia coli. J Bacteriol 169: 1495-1504.Google Scholar
  126. 124.
    Galen JE, Ketley JM, Fasano A, Richardson SH, Wasserman SS, Kaper JB: Role of Vibrio cholerae neuraminidase in the function of cholera toxin. Infect Immun 60: 406–415, 1992.PubMedGoogle Scholar
  127. 125.
    Roggentin P, Rothe B, Kaper JB, et al: Conserved sequences in bacterial and viral sialidases. Glycoconjugate J 6: 349–353, 1989.CrossRefGoogle Scholar
  128. 126.
    Michalski J, Galen J, Kaper J: Chromosomal site directed mutagenesis in Vibrio cholerae using a bacteriophage delivery system, in: Abstracts of the 88th Annual Meeting of the American Society for Microbiology, Miami Beach, Am. Soc. Microbio, 1988, p 106.Google Scholar
  129. 127.
    Fasano A, Baudry B, Pumplin DW et al: Vibrio cholerae produces a second enterotoxin which affects intestinal tight junctions. Proc Natl Acad Sci USA 88: 5242–5246, 1991.PubMedCrossRefGoogle Scholar
  130. 128.
    Baudry B, Fasano A, Ketley J, Kaper JB: Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect Immun 60: 428–434, 1992.PubMedGoogle Scholar
  131. 129.
    Sanyal SC, Neogi PKB, Alam K, Huq MI, Al-Mahmud KA: A new enterotoxin produced by Vibrio cholerae 01. J Diarrheal Disease Research 2: 3–12, 1984.Google Scholar
  132. 130.
    Morris JG, Takeda T, Tall BD, et al: Experimental non-O group 1 Vibrio cholerae gastroenteritis in humans. J Clin Invest 85: 697–705, 1990.PubMedCrossRefGoogle Scholar
  133. 131.
    Ogawa A, Kato J-I, Watanabe H, et al: Cloning and nucleotide sequence of a heat-stable enterotoxin gene from Vibrio cholerae non-01 isolated from a patient with traveler’s diarrhea. Infect Immun 58: 3325–3329, 1990.PubMedGoogle Scholar
  134. 132.
    Newland JW, Green BA, Foulds J, Holmes RK: Cloning of extracellular DNase and construction of a DNasenegative strain of Vibrio cholerae. Infect Immun 47: 691–696, 1985.PubMedGoogle Scholar
  135. 133.
    Focareta T, Manning PA: Extracellular proteins of Vibrio cholerae: molecular cloning, nucleotide sequence and characterization of the deoxyribonuclease (DNase) together with its periplasmic location in Escherichia coli K-12. Gene 53: 31–40, 1987.PubMedCrossRefGoogle Scholar
  136. 134.
    Imbesi F, Manning PA: Biotype-specific restriction and modification of DNA in Vibrio cholerae. J Clin Microbiol 16: 552–554, 1982.PubMedGoogle Scholar
  137. 135.
    Goldberg I, Mekalanos J: Cloning of the Vibrio cholerae recA gene and construction of a Vibrio cholerae recA mutant. J Bacteriol 165: 715–722, 1986.PubMedGoogle Scholar
  138. 136.
    Hamood AN, Pettis GS, Parker CD, McIntosh MA: Isolation and characterization of the Vibrio cholerae recA gene. J Bacteriol 167: 375–378, 1986.PubMedGoogle Scholar
  139. 137.
    Paul K, Ghosh SK, Das J: Cloning and expression in Escherichia coli of a recA-like gene from Vibrio cholerae. Molec Gen Genetics 203: 58–63, 1986.CrossRefGoogle Scholar
  140. 138.
    Ketley JM, Kaper JB, Herrington D, et al: Diminished immunogenicity of a recombination-deficient derivative of Vibrio cholerae vaccine strain CVD103. Infect Immun 58: 1481–1484, 1990.PubMedGoogle Scholar
  141. 139.
    Bera TK, Ghosh SK, Das J: Cloning and characterization of mutL and mutS genes of Vibrio cholerae: nucleotide sequence of the mutL gene. Nucleic Acids Res 17: 6241–6250, 1989.PubMedCrossRefGoogle Scholar
  142. 140.
    Srivastava R, Sinha VB, Srivastava BS: Chromosomal transfer and in vivo cloning of genes in Vibrio cholerae using RP4 :mini-Mu. Gene 75: 253–259, 1989.PubMedCrossRefGoogle Scholar
  143. 141.
    Mostow P, Richardson K: High-frequency spontaneous mutation of classical Vibrio cholerae to nonmotile phenotype. Infect Immun 58: 3633–3639, 1990.PubMedGoogle Scholar
  144. 142.
    Houng H-SH, Cook TM: Cloning of the galactose utilization genes of Vibrio cholerae. Ann NY Acad Sci 435: 601–603, 1985.CrossRefGoogle Scholar
  145. 143.
    Sigel SP, Payne SM: Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae. J Bacteriol 150: 148–155, 1982.PubMedGoogle Scholar
  146. 144.
    Sciortino CV, Finkelstein RA: Vibrio cholerae expresses iron-regulated outer membrane proteins in vivo. Infect Immun 42: 990–996, 1983.PubMedGoogle Scholar
  147. 145.
    Calderwood SB, Mekalanos JJ: Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170: 1015–1017, 1988.PubMedGoogle Scholar
  148. 146.
    Goldberg MB, DiRita VJ, Calderwood SB: Identification of an iron-regulated virulence determinant in Vibrio cholerae, using TnphoA mutagenesis. Infect Immun 58: 55–60, 1990.PubMedGoogle Scholar
  149. 147.
    Goldberg MB, Boyko SA, Calderwood SB: Transcriptional regulation by iron of a Vibrio cholerae virulence gene and homology of the gene to the Escherichia coli Fur system. J Bacteriol 172: 6863–6870, 1990.PubMedGoogle Scholar
  150. 148.
    Goldberg MB, Boyko SA, Calderwood SB: Positive transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae. Proc Natl Acad Sci USA 88: 1125–1129, 1991.PubMedCrossRefGoogle Scholar
  151. 148a.
    Richardson K, Kaper JB, Levine MM: Human immune response to Vibrio cholerae 01 whole cells and isolated outer membrane antigens. Infect Immun 57: 495–501, 1989.PubMedGoogle Scholar
  152. 149.
    Jonson G, Svennerholm A-M, Holmgren J: Vibrio cholerae expresses cell surface antigens during intestinal infection which are not expressed during in vitro culture. Infect Immun 57: 1809–1815, 1989.PubMedGoogle Scholar
  153. 150.
    Finkelstein RA, Vasil ML, Holmes RK: Studies on toxinogenesis in Vibrio cholerae. I. Isolation of mutants with altered toxinogenicity. J Infect Dis 129: 117–123, 1974.PubMedCrossRefGoogle Scholar
  154. 151.
    Honda T, Finkelstein RA: Selection and characteristics of a Vibrio cholerae mutant lacking the A (ADP-ribosylating) portion of the cholera enterotoxin. Proc Natl Acad Sci USA 76: 2052–2056, 1979.PubMedCrossRefGoogle Scholar
  155. 152.
    Kaper JB, Lockman H, Baldini MM, Levine MM: Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates. Nature 308: 655–658, 1984.PubMedCrossRefGoogle Scholar
  156. 153.
    Kaper JB, Lockman H, Baldini MM, Levine MM: A recombinant live oral cholera vaccine. Bio/Technol 2: 345–349, 1984.CrossRefGoogle Scholar
  157. 154.
    Attridge SR, Daniels D, Morona JK, Morona R: Surface co-expression of Vibrio cholerae and Salmonella typhi O-antigens on Ty21a clone EX210. Microbial Pathogenesis 8: 177–188, 1990.PubMedCrossRefGoogle Scholar
  158. 155.
    Kaper JB, Bradford HB, Roberts NC, Falkow S: Molecular epidemiology of Vibrio cholerae in the U.S. Gulf Coast. J Clin Microbiol 16: 129–134, 1982.PubMedGoogle Scholar
  159. 156.
    Roberts NC, Siebeling RJ, Kaper JB, Bradford HB Jr: Vibrios in the Louisiana Gulf Coast environment. Microb Ecol 8: 299–312, 1982.CrossRefGoogle Scholar
  160. 157.
    Kaper JB, Nataro JP, Roberts NC, et al: Molecular epidemiology of Non-01 Vibrio cholerae and Vibrio mimicus in the U.S. Gulf Coast region. J Clin Microbiol 23: 652–654, 1986.PubMedGoogle Scholar
  161. 158.
    Koblavi S, Grimont F, Grimont PAD: Clonal diversity of Vibrio cholerae 01 evidenced by rRNA gene restriction patterns. Res Microbiol 141: 645–657, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • James B. Kaper
  • Mary M. Baldini

There are no affiliations available

Personalised recommendations