Skip to main content

GABA-Gated CI Currents and Their Regulation by Intracellular Free Ca2 +

  • Chapter
Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells

Abstract

Intracellular Ca2 + is well known to play a central role in the transduction of extra-cellular signals (Nishizuka, 1984) and in the control and modulation of fundamental cellular functions. In addition to well-established functions such as Ca2 + -mediated transmitter release from nerve terminals (Katz and Miledi, 1967), the liberation of hormones from neuroendocrine cells (Thorn et al., 1978), and muscular contraction, several types of voltage-dependent ionic channels, including Ca2 + channels themselves, have been found to be highly sensitive to changes in intracellular free Ca2 + concentration ([Ca2 +]i) (Colquhoun et al., 1981; Eckert et al., 1981; Bader et al., 1982; Maruyama and Petersen, 1982; Yellen, 1982; Ashcroft and Stanfield, 1984; Marty et al., 1984; Owen et al., 1984; Bregestovski et al., 1986; see also Mayer et al., this volume). Other prominent examples are the Ca2 + -activated K+ conductance in molluscan neurons (Meech and Standen, 1975; Thompson, 1977; Aldrich et al., 1979) and the Ca2 + -activated anion conductance in mouse spinal cord neurons (Owen et al., 1984) and rat sensory neurons (Mayer, 1985). However, evidence increasingly suggests that not only electrically operated but also chemically gated neuronal membrane conductances are affected by such transient changes in [Ca2 +]i (Morita et al., 1979; Miledi, 1980; Chemeris et al., 1982). An increase in [Ca2 +]i not only facilitates the onset of desensitization to the nicotinic cation response of acetylcholine in the muscle endplate (Miledi, 1980) but also inhibits the nicotinic Cl response in Aplysia neurons (Chemeris et al., 1982) as well as the nicotinic cation response in frog sympathetic ganglion cells (Morita et al., 1979). [Ca2 +]i also behaves as a second messenger for many biologically active substances (Rasmussen and Barrett, 1984). In this chapter we report a powerful suppressive action of C2 +]i on the γ-aminobutyric acid (GABA)gated Cl current in isolated bullfrog sensory neurons. We also report evidence for a saturable intracellular binding site for Ca2 + and other divalent cations which mediates this suppressive effect. We recorded macroscopic and single-channel membrane currents from internally perfused sensory neurons of bullfrog dorsal root ganglia using “concentration-clamp” (Akaike et al., 1986, 1987) and patch-clamp (Hamill et al., 1981) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, N., Brown, A. M., Dahl, G., Higashi, H., Isenberg, G., Tsuda, Y., and Yatani, A., 1983, Voltage-dependent activation of potassium current in Helix neurones by endogenous cellular calcium, J. Physiol. (London) 334: 309–324.

    CAS  Google Scholar 

  • Akaike, N., Inoue, M., and Krishtal, O. A., 1986, “Concentration clamp” study of y-aminobutyric acid-induced chloride current kinetics in frog sensory neurones, J. Physiol. (London) 379:171–185.

    Google Scholar 

  • Akaike, N., Yakushiji, T., Tokutomi, N., and Carpenter, D. O., 1987, Multiple mechanisms of antagonism of y-aminobutyric acid (GABA) responses, Cell. Mol. Neurobiol. 7: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Aldrich, R. W., Jr., Getting, P. A., and Thompson, S. H., 1979, Inactivation of delayed outward current in molluscan neurone somata, J. Physiol. (London) 291: 507–530.

    Google Scholar 

  • Ashcroft, F. M., and Stanfield, P. R., 1984, Calcium dependence of the inactivation of calcium currents in skeletal muscle fibers of an insect, Science 213: 224–226.

    Article  Google Scholar 

  • Bader, C. R., Bertrand, D., and Schwartz, E. A., 1982, Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina, J. Physiol. (London) 331: 253–284.

    CAS  Google Scholar 

  • Bregestovski, P., Redkozubov, A., and Alexev, A., 1986, Elevation of intracellular calcium reduces voltage-dependent potassium conductance in human T cells, Nature 319: 776–778.

    Article  PubMed  CAS  Google Scholar 

  • Chemeris, N. K., Kazachenko, V. N., and Kurchikov, A. L., 1982, Inhibition of acetylcholine responses by intracellular calcium in Lymnaea stagnalis neurones, J. Physiol. (London) 323: 1–19.

    CAS  Google Scholar 

  • Colquhoun, D., Neher, E., Reuter, H., and Stevens, C. F., 1981, Inward current channels activated by intracellular Ca in cultured cardiac cells, Nature 294: 752–754.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R., Tillotson, D. L., and Brehm, P., 1981, Calcium-mediated control of Ca and K currents, Fed. Proc. 40: 2226–2232.

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1980, Potassium conductance and internal calcium accumulation in a molluscan neurone, J. Physiol. (London) 308: 287–313.

    CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.

    Article  CAS  Google Scholar 

  • Inoue, M., Oomuna, Y., Yakushiji, T., and Akaike, N., 1986, Intracellular calcium ions decrease the affinity of the GABA receptor, Nature 324: 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, M., Tokutomi, N., and Akaike, N., 1987, Modulation of the y-aminobutyric acid-gated chloride current by intracellular calcium in frog sensory neurons, Jpn. J. Physiol. 37: 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka, S., Hattori, K., and Akaike, N., 1984, Separation of ionic currents in the somatic membrane of frog sensory neurons, J. Membr. Biol. 78: 19–28.

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., and Miledi, R., 1967, A study of synaptic transmission in the absence of nerve impulses, J. Physiol. (London) 192: 407–436.

    CAS  Google Scholar 

  • Krnjevic, K., Morris, M. E., and Roped, N., 1986, Changes in free calcium ion concentration recorded inside hippocampal pyramidal cells in situ, Brain Res. 374: 1–11.

    Article  PubMed  CAS  Google Scholar 

  • MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J., and Barker, J. L., 1986, NMDAreceptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones, Nature 321: 519.

    Article  PubMed  CAS  Google Scholar 

  • Marty, A., and Neher, E., 1985, Potassium channels in cultured bovine adrenal chromaffin cells, J. Physiol. (London) 367: 117–141.

    CAS  Google Scholar 

  • Marty, A., Tan, Y. P., and Trautman, A. J., 1984, Three types of calcium-dependent channels in rat lacrimal glands, J. Physiol. (London) 357: 293–325.

    CAS  Google Scholar 

  • Maruyama, Y., and Petersen, O. H., 1982, Single-channel currents in isolated patches of plasma membrane from basal surface of pancreatic acini, Nature 299: 159–161.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M., 1985, A calcium-activated chloride current generates the afterdepolarization of rat sensory neurones in culture, J. Physiol. (London) 364: 217–239.

    CAS  Google Scholar 

  • Meech, R. W., 1972, Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells, Comp. Biochem. Physiol. 42A: 493–499.

    Article  CAS  Google Scholar 

  • Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurones under voltage clamp: A component mediated by calcium influx, J. Physiol. (London) 249: 211–239.

    CAS  Google Scholar 

  • Miledi, R., 1980, Intracellular calcium and desensitization of acetylcholine receptors, Proc. R. Soc. London Ser. B 209: 447–452.

    Article  CAS  Google Scholar 

  • Miledi, R., and Parker, I., 1984, Chloride current induced by injection of calcium into Xenopus oocytes, J. Physiol. (London) 357: 173–183.

    CAS  Google Scholar 

  • Morita, K., Kato, E., and Kuba, K., 1979, A possible role of intracellular Cat+ in the regulation of the Ach receptor—ion channel complex of the sympathetic ganglion cell, Kurume Med. J. 26: 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., 1986, Concentration profiles of intracellular calcium in the presence of a diffusible chelator, Exp. Brain Res. Suppl. 14: 80–96.

    CAS  Google Scholar 

  • Nishizuka, Y., 1984, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature 308: 693–798.

    Article  PubMed  CAS  Google Scholar 

  • Owen, D. G., Segal, M., and Barker, J. L., 1984, A Ca-dependent CL conductance in cultured mouse spinal neurones, Nature 311: 567–570.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H., and Barrett, P. Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64: 938–984.

    PubMed  CAS  Google Scholar 

  • Schofield, P. R., Darlison, M. G., Fujita, N., Burt, D. R., Stephenson, F. A., Rodriguez, H., Rhee, L. M., Ramachandran, J., Reale, V., Glencorse, T. A., Seeburg, P. H., and Barnard, E. A., 1987, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family, Nature 328: 221–227.

    Article  PubMed  CAS  Google Scholar 

  • Stelzer, A., Slater, N. T., and ten Bruggencate, G., 1987, Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy, Nature 326: 698–701.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, S. H., 1977, Three pharmacologically distinct potassium channels in molluscan neurones, J. Physiol. (London) 265: 465–488.

    PubMed  CAS  Google Scholar 

  • Thorn, N. A., Russell, J. T., Torp-Pedersen, C., and Treiman, M., 1978, Calcium and neurosecretion, Ann. N.Y. Acad. Sci. 307: 618–639.

    Article  PubMed  CAS  Google Scholar 

  • Yellen, G., 1982, Single Cat+-activated nonselective cation channels in neuroblastoma, Nature 296: 357359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Akaike, N. (1990). GABA-Gated CI Currents and Their Regulation by Intracellular Free Ca2 + . In: Alvarez-Leefmans, F.J., Russell, J.M. (eds) Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9685-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9685-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9687-2

  • Online ISBN: 978-1-4757-9685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics