Chloride Transport across Glial Membranes

  • H. K. Kimelberg


Ions flow across cell membranes by two major classes of transport mechanisms. One class is represented by ion channels, which are best viewed as water-filled pathways through specific proteins embedded in the membrane lipid bilayer (Hille, 1984). Such channels show selectivity for different ions according to size and charge. The rate of movement of ions through these channels is determined by the electrochemical driving force on the ion and the individual conductances of the channels. Characteristically, channel-mediated fluxes are very large, in excess of 106 ions/sec per channel (Hille, 1984). The number of channels per unit area, the rate at which these channels open, and the duration of time they are open are important determinants of channel-mediated ion fluxes. Channel opening can be modified by transmembrane voltage, specific ligands, or when tension is applied to the membrane (Sachs, 1988). In the case of the various chloride channels, all these forces seem to operate as we shall learn later in this chapter as well as in other chapters in this volume.


Glial Cell Regulatory Volume Decrease Ehrlich Ascites Tumor Cell Olfactory Cortex Dibutyryl cAMP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, H. R., and Loeschcke, H. H., 1983, Evidence for a carrier mediated exchange diffusion of HCO3-, against Cl- at the interphases of the central nervous system, in: Central Neurone Environment ( M. W. Schlafke, H. P. Loepchen, and W. R. See, eds.), Springer-Verlag, Berlin, pp. 13–21.Google Scholar
  2. Akerman, K. E. O., Enkvist, M. O. K., and Holopainen, I., 1988, Activators of protein kinase C and phenylephrine depolarize the astrocyte membrane by reducing the K+ permeability, Neurosci. Lett. 92: 265–269.PubMedCrossRefGoogle Scholar
  3. Astion, M. L., and Orkand, R. K., 1988, Electrogenic Na+ /HCO3- cotransport in neuroglia, Glia 1: 355 - 357.PubMedCrossRefGoogle Scholar
  4. Ballanyi, K., Grafe, P., and Bruggencate, G. T., 1987, Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices, J. Physiol. 382: 159–174.PubMedGoogle Scholar
  5. Barron, K. D., Dentinger, M. P., Kimelberg, H. K., Nelson, L. R., Bourke, R. S., Keagan, S., Mankes, R., and Cragoe, E. J., Jr., 1988, Ultrastructural features of a brain injury model in cat, Acta Neuropathol. 76: 295–307.CrossRefGoogle Scholar
  6. Becker, D. P., 1985, Brain acidosis in head injury: A clinical trial, in: Central Nervous System Trauma—Status Report (D. P. Becker and J. T. Povlishock, eds. ), NINCDS, pp. 229–242.Google Scholar
  7. Bevan, S., and Raff, M., 1985, Voltage-dependent potassium currents in cultured astrocytes, Nature 315: 229–232.PubMedCrossRefGoogle Scholar
  8. Bevan, S., Chiu, S. Y., Gray, P. T. A., and Ritchie, J. M., 1985, The presence of voltage-gated sodium, potassium and chloride channels in rat cultured astrocytes, Proc. R. Soc. London Ser. B 225: 229–313.CrossRefGoogle Scholar
  9. Boron, W. F., 1986, Intracellular pH in epithelial cells, Annu. Rev. Physiol. 48: 377–388.PubMedCrossRefGoogle Scholar
  10. Boron, W. F., and Boulpaep, E. L., 1983, Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO: transport, J. Gen. Physiol. 81: 53–94.PubMedCrossRefGoogle Scholar
  11. Bourke, R. S., Kimelberg, H. K., West, C. R., and Bremer, A. M., 1975, The effect of HCO3- on the swelling and ion uptake of monkey cerebral cortex under conditions of raised extracellular potassium, J. Neurochem. 25: 323–328.PubMedCrossRefGoogle Scholar
  12. Bourke, R. S., Kimelberg, H. K., Daze, M., and Church, G., 1983, Swelling and ion uptake in cat cerebrocortical slices: Control by neurotransmitters and ion transport mechanisms, Neurochem. Res. 8: 5–24.PubMedCrossRefGoogle Scholar
  13. Bowman, C. L., and Kimelberg, H. K., 1984, Excitatory amino acids depolarize rat brain astrocytes in primary culture, Nature 311: 656–659.PubMedCrossRefGoogle Scholar
  14. Bowman, C. L., and Kimelberg, H. K., 1987, Pharmacological properties of the norepinephrine-induced depolarization of astrocytes in primary culture: Evidence for the involvement of an alpha -adrenergic receptor, Brain Res. 423: 403–407.PubMedCrossRefGoogle Scholar
  15. Boyle, P. J., and Conway, E. J., 1941, Potassium accumulation in muscle and associated changes, J. Physiol. (London) 100: 1–63.Google Scholar
  16. Bracho, H., Orkand, P. M., and Orkand, R. K., 1975, A further study of the fine structure and membrane properties of neuroglia in the optic nerve of Necturus, J. Neurobiol. 6: 395–410.PubMedCrossRefGoogle Scholar
  17. Brazy, P. C., and Gunn, R. B., 1976, Furosemide inhibition of chloride transport in human red blood cells, J. Gen. Physiol. 68: 583–599.PubMedCrossRefGoogle Scholar
  18. Cala, P. M., 1980, Volume regulation by Amphiuma red blood cells, J. Gen. Physiol. 76: 683–708.PubMedCrossRefGoogle Scholar
  19. Chamberlin, M. E., and Strange, K., 1989, Anisosmotic cell volume regulation: A comparative view, Am. J. Physiol. 257: C159 - C173.PubMedGoogle Scholar
  20. Chester, M., 1987, pH regulation in the vertebrate central nervous system: Microelectrodes studies in the brain stem of the lamprey, Can. J. Physiol. Pharmacol. 65: 986–993.Google Scholar
  21. Chester, M., and Kraig, R. P., 1987, Intracellular pH of astrocytes increases rapidly with cortical stimulation, Am. J. Physiol. 253: R666–670.Google Scholar
  22. Chester, M., and Kraig, R. P., 1989, Intracellular pH transients of mammalian astrocytes, J. Neurosci. 9: 2011–2019.Google Scholar
  23. Christensen, O., 1987, Mediation of cell volume regulation by Ca2 influx through stretch-activated channels, Nature 330: 66–68.PubMedCrossRefGoogle Scholar
  24. Cragoe, E. J., Jr., 1987, Drugs for the treatment of traumatic brain injury, Med. Res. Rev. 7: 271–305.PubMedCrossRefGoogle Scholar
  25. Cragoe, E. J., Gould, N. P., Woltersdorf, O. W., Ziegler, C., Bourke, R. S., Nelson, L. R., Kimelberg, H. K., Waldman, J. B., Popp, A. J., and Sedransk, N., 1982, Agents for the treatment of brain injury. 1. (Aryloxy)alkanoic acids, J. Med. Chem. 25: 567–579.PubMedCrossRefGoogle Scholar
  26. Cragoe, E. J., Jr., Woltersdorf, O. W., Jr., Gould, N. P., Pietruszkiewicz, A. M., Ziegler, C., Sakurai, Y., Stokker, G. E., Anderson, P. S., Bourke, R. S., Kimelberg, H. K., Nelson, L. R., Barron, K. D., Rose, J. R., Szarowski, D., Popp, A. J., and Waldman, J. B., 1986, Agents for the treatment of brain edema. 2. [(2,3,9,9a-tetrahydro-3-oxo-9a-substituted-1H-fluoren-7-yl)oxy] alkanoic acids and some of their analogs, J. Med. Chem. 29: 825–841.PubMedCrossRefGoogle Scholar
  27. Fedoroff, S., and Vernadakis, A., eds., 1986, Astrocytes, Volumes 1–3, Academic Press, New York.Google Scholar
  28. Fonnum, F., Karlsen, R. L., Malthe-Sorenssen, D., Sterri, S., and Walaas, I., 1980, High affinity transport systems and their role in transmitter action, in: The Cell Surface and Neuronal Function ( C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), North-Holland, Amsterdam, pp. 455–504.Google Scholar
  29. Franck, G., and Schoffeniels, E., 1972, Cationic composition of rat cerebral cortex slices. Comparative study during development, J. Neurochem. 19: 395–402.PubMedCrossRefGoogle Scholar
  30. Frelin, C., Chassande, O., and Lazdunski, M., 1986, Biochemical characterization of the Na+ /K+ /Cl- co-transport in chick cardiac cells, Biochem. Biophys. Res. Commun. 134: 326–331.PubMedCrossRefGoogle Scholar
  31. Frizzell, R. A., Field, M., and Schultz, S. G., 1979, Sodium-chloride transport by epithelial tissues, Am. J. Physiol. 236: F1 - F8.PubMedGoogle Scholar
  32. Frizzell, R. A., Halm, D. R., Rechkemmer, G., and Shoemaker, R. L., 1986, Chloride channel regulation in secretory epithelia, Fed. Proc. 45: 2727–2731.PubMedGoogle Scholar
  33. Garay, R. P., Hannaert, P. R., Nazaret, C., and Cragoe, E. J., Jr., 1986, The significance of the relative effects of loop diuretics and anti-brain edema agents on the Na+,K+,Cl- co-transport system and the Cl- /NaCW anion exchanger, Naunyn-Schmiedeberg’s Arch. Pharmacol. 334: 202–209.PubMedCrossRefGoogle Scholar
  34. Geck, P., and Heinz, E., 1986, The Na-K-2C1 cotransport system, J. Membr. Biol. 91: 97–105.PubMedCrossRefGoogle Scholar
  35. Gilles, R., 1987, Regulation in cells of euryhaline invertebrates, Curr. Top. Membr. Transp. 30: 205–247.CrossRefGoogle Scholar
  36. Grafe, P., and Ballanyi, K., 1987, Cellular mechanisms of potassium homeostasis in the mammalian nervous system, Can. J. Physiol. Pharmacol. 65: 1038–1042.PubMedCrossRefGoogle Scholar
  37. Gray, P. T. A., and Ritchie, J. M., 1986, A voltage-gated chloride conductance in rat cultured astrocytes, Proc. R. Soc. London Ser. B 228: 267–288.CrossRefGoogle Scholar
  38. Greger, R., 1985, Ion transport mechanisms in thick ascending limb of Henle’s loop of mammalian nephron, Physiol. Rev. 65: 760–797.PubMedGoogle Scholar
  39. Greven, J., Kolling, B., Bronewski-Schwarzer, B. V., Junker, M., Neffgen, B., and Nilius, R. M., 1984, Evidence of a role of Tamm-Horsfall protein in the tubular action of furosemide-like loop diuretics, in: Diuretics ( J. B. Puschett, ed.), Elsevier, Amsterdam, pp. 203–209.Google Scholar
  40. Grinstein, S., Rothstein, A., Sarkadi, B., and Gelfand, E. W., 1984, Responses of lymphocytes to anisotonic media: Volume-regulating behavior, Am. J. Physiol. 246: C204 - C215.PubMedGoogle Scholar
  41. Hallermeyer, K., Harmening, C., and Hamprecht, B., 1981, Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice, J. Neurochem. 37: 43–52.CrossRefGoogle Scholar
  42. Hansen, A. J., 1985, Effect of anoxia on ion distribution in the brain, Physiol. Rev. 65: 101–148.PubMedGoogle Scholar
  43. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Mass., pp. 1.Google Scholar
  44. Hirata, H., Slater, N. T., and Kimelberg, H. K., 1983, Alpha-adrenergic receptor-mediated depolarization of rat neocortical astrocytes in primary culture, Brain Res. 270: 358–362.PubMedCrossRefGoogle Scholar
  45. Hodgkin, A. L., and Horowicz, P., 1959, The influence of potassium and chloride on the membrane potential of single muscle fibres, J. Physiol. (London) 148: 127–160.Google Scholar
  46. Hoffman, E. K., 1985, Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells, Fed. Proc. 44: 2513–2519.Google Scholar
  47. Hoffman, E. K., 1986, Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta 864: 1–31.CrossRefGoogle Scholar
  48. Hoffman, E. K., 1987, Volume regulation in cultured cells, Curr. Top. Membr. Transp. 30: 125–180.CrossRefGoogle Scholar
  49. Hoffman, E. K., Sjoholm, C., and Simonsen, L. O., 1983, Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase), J. Membr. Biol. 76: 269–280.CrossRefGoogle Scholar
  50. Houamed, K. M., Bilbe, G., Smart, T. G., Constanti, A., Brown, D. A., Barnard, E. A., and Richards, B. M., 1984, Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA, Nature 310: 318–321.PubMedCrossRefGoogle Scholar
  51. Johnson, J. H., Dunn, D. P., and Rosenberg, R. N., 1982, Furosemide-sensitive K+ channel in glioma cells but not neuroblastoma cells in culture, Biochem. Biophys. Res. Commun. 109: 100–105.PubMedCrossRefGoogle Scholar
  52. Karlsson, K. A., Samuelsson, B. E., and Steen, G. O., 1971, Lipid pattern and Na+ -K+-dependent adenosine triphosphatase activity in the salt gland of cluck before and after adaptation in hypertonie saline, J. Membr. Biol. 5: 169–184.CrossRefGoogle Scholar
  53. Katz, D., and Kimelberg, H. K., 1985, Kinetics and autoradiography of high affinity uptake of serotonin by primary astrocyte cultures, J. Neurosci. 5: 1901–1908.PubMedGoogle Scholar
  54. Kay, M. M. B., Tracey, C. M., Goodman, J. R., Cone, J. C., and Bassel, P. S., 1983, Polypeptides immunologically related to band 3 are present in nucleated somatic cells, Proc. Natl. Acad. Sci. USA 80: 6882–6886.PubMedCrossRefGoogle Scholar
  55. Kettenmann, H., 1987, K+ and Cl- uptake by cultured oligodendrocytes, Can. J. Physiol. Pharmacol. 65: 1033–1037.PubMedCrossRefGoogle Scholar
  56. Kettenmann, H., and Schachner, M., 1985, Pharmacological properties of gamma-aminobutyric-acid-,glutamate-, and aspartate-induced depolarizations in cultured astrocytes, J. Neurosci. 5: 3295–3301.PubMedGoogle Scholar
  57. Kettenmann, H., Backus, K. H., and Schachner, M., 1987, Gamma-aminobutyric-acid opens Cl- channels in cultured astrocytes, Brain Res. 404: 1–9.PubMedCrossRefGoogle Scholar
  58. Kimelberg, H. K., 1979, Glial enzymes and ion transport in brain swelling, in: Neural Trauma (A. J. PoppGoogle Scholar
  59. R. S. Bourke, L. R. Nelson, and H. K. Kimelberg, eds.), Raven Press, New York, pp. 137–153.Google Scholar
  60. Kimelberg, H. K., 1981, Active accumulation and exchange transport of chloride in astroglial cells in culture, Biochim. Biophys. Acta 646: 179–184.PubMedCrossRefGoogle Scholar
  61. Kimelberg, H. K., 1983, Primary astrocyte cultures—a key to astrocyte function, Cell Mol. Neurobiol. 3: 16.CrossRefGoogle Scholar
  62. Kimelberg, H. K., 1987, Anisotonic media and glutamate-induced ion transport and volume responses in primary astrocyte culture, J. Physiol. (London) 82: 294–303.Google Scholar
  63. Kimelberg, H. K., and Bourke, R. S., 1982, Anion transport in the nervous system, in: Handbook of Neurochemistry, 2nd ed. ( A. Lajtha, ed.), Plenum Press, New York, pp. 31–67.Google Scholar
  64. Kimelberg, H. K., and Frangakis, M. V., 1985, Furosemide-and bumetanide-sensitive ion transport and volume control in primary astrocyte cultures from rat brain, Brain Res. 361: 125–134.PubMedCrossRefGoogle Scholar
  65. Kimelberg, H. K., and Frangakis, M. V., 1986, Volume regulation in primary astrocyte cultures, Adv. Biosci. 61: 177–186.Google Scholar
  66. Kimelberg, H. K., and Goderie, S. K., 1988, Volume regulation after swelling in primary astrocyte cultures, in: The Biochemical Pathology of Astrocytes (M. I). Norenberg, A. Schousboe, and L. Hertz, eds.), Liss, New York, pp. 299–311.Google Scholar
  67. Kimelberg, H. K., and O’Connor, E. R., 1988, Swelling of astrocytes causes membrane potential depolarization, Glia 1: 219–224.PubMedCrossRefGoogle Scholar
  68. Kimelberg, H. K., and Pang, S., 1987, Effects of L-glutamate on ion transport processes and swelling in primary astrocyte cultures, Soc. Neurosci. Abstr. 13: 195.Google Scholar
  69. Kimelberg, H. K., and Ransom, B. R., 1986, Physiological and pathological aspects of astrocytic swelling, in: Astrocytes, Volume 3 ( S. Fedoroff and A. Vernadakis, eds.), Academic Press, New York, pp. 129–166.Google Scholar
  70. Kimelberg, H. K., and Ricard, C., 1982, Control of intracellular pH in primary astrocyte cultures by external Na+, Trans. Am. Soc. Neurochem. 13: 112.Google Scholar
  71. Kimelberg, H. K., Narumi, S., Biddlecome, S., and Bourke, R. S., 1978a, (Na+ K+) ATPase, 86Rb+ transport and carbonic anhydrase activity in isolated brain cells and cultured astrocytes, in: Dynamic Properties of Glia Cells (G. Franck, L. Hertz, E. Schoffeniels, and D. B. Tower, eds.), Pergamon Press, Elmsford, N.Y., pp. 347–357.Google Scholar
  72. Kimelberg, H. K., Biddlecome, S., Narumi, S., and Bourke, R. S., 1978b, ATPase and carbonic anhydrase activities of bulk-isolated neuron, glia and synaptosome fractions from rat brain, Brain Res. 141: 305–323.PubMedCrossRefGoogle Scholar
  73. Kimelberg, H. K., Biddlecome, S., Bourke, R. S., and Bowman, C. L., 1978c, Membrane potential and Cl- transport properties of primary glial cultures from rat brain, in: Frontiers of Biological Energetics, I ( P. L. Dutton, J. S. Leigh, and A. Scarpa, eds.), Academic Press, New York, pp. 563–572.Google Scholar
  74. Kimelberg, H. K., Biddlecome, S., and Bourke, R. S., 1979a, SITS-inhibitable Cl- transport and Na–dependent H+ production in primary astroglial cultures, Brain Res. 173: 111–124.PubMedGoogle Scholar
  75. Kimelberg, H. K., Bowman, C. L., Biddlecome, S., and Bourke, R. S., 1979b, Cation transport and membrane potential properties of primary astroglial cultures from neonatal rat brains, Brain Res. 177: 533–550.PubMedCrossRefGoogle Scholar
  76. Kimelberg, H. K., Bourke, R. S., Stieg, P., Barron, K. D., Hirata, H., Pelton, E. W., and Nelson, L. R., 1982a, Swelling of astroglia after injury to the central nervous system: Mechanisms and consequences, in: Head Injury: Basic and Clinical Aspects ( R. G. Grossman and P. L. Gildenberg, eds.), Raven Press, New York, pp. 31–44.Google Scholar
  77. Kimelberg, H. K., Hirata, H., Bowman, C., and Mazurkiewicz, J., 1982b, Effects of K+, Na+ and Cl- on membrane potentials and 1—V curves of primary astrocyte cultures, Soc. Neurosci. Abstr. 8: 238.Google Scholar
  78. Kimelberg, H. K., Bowman, C. L., and Hirata, H., 1986, Anion transport in astrocytes, Ann. N.Y. Acad. Sci. 481: 334–353.PubMedCrossRefGoogle Scholar
  79. Kimelberg, H. K., Cragoe, E. J., Jr., Nelson, L. R., Popp, A. J., Szarowski, D., Rose, J. W., Woltersdorf, O. W., Jr., and Pietruszkiewicz, A. M., 1987, Improved recovery from a traumatic-hypoxic brain injury in cats by intracisternal injection of an anion transport inhibitor, Central Nervous System Trauma 4: 3–14.PubMedGoogle Scholar
  80. Kimelberg, H. K., Pang, S., and Treble, D. H., 1989a, Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures, J. Neurosci. 9: 1141–1149.PubMedGoogle Scholar
  81. Kimelberg, H. K., Goderie, S., and Waniewski, R., 1989b, Hypoosmotic media-induced release of amino acids from astrocytes, Soc. Neurosci. Abst. 15: 353.Google Scholar
  82. Klatzo, I., Suzuki, R., Orzi, F., Schuier, F., and Nitsch, C., 1984, Pathomechanisms of ischemic brain edema, in: Recent Progress in the Study and Therapy of Brain Edema ( T. G. Go and A. Baethmann, eds.), Plenum Press, New York, pp. 1–10.CrossRefGoogle Scholar
  83. Kletzien, R. F., Pariza, M. W., Becker, J. E., and Potter, V. R., 1975, A method using 3-O-methyl-I glucose and phloretin for the determination of intracellular water space of cells in monolayer cultures, Anal. Biochim. 68: 537–544.CrossRefGoogle Scholar
  84. Kopito, R. R., Andersson, M., and Lodish, H. F., 1987, Structure and organization of the murine band 3 gene, J. Biol. Chem. 262: 8035–8040.PubMedGoogle Scholar
  85. Kraig, R. P., and Nicholson, C., 1987, Profound acidosis of presumed glial during ischemia, in: Cerebravascular Diseases ( M. E. Raichle and W. J. Powers, eds.), New York, Raven Press, pp. 97–102.Google Scholar
  86. Kraig, R. P., Pulsinelli, W. A., and Plum, F., 1985, Hydrogen ion buffering during complete brain ischemia, Brain Res. 342: 281–290.PubMedCrossRefGoogle Scholar
  87. Kregenow, F. M., 1981, Osmoregulatory salt transporting mechanisms: Control of cell volume in anisotonic media, Annu. Rev. Physiol. 43: 493–505.PubMedCrossRefGoogle Scholar
  88. Kuffler, S. W., Nicholls, J. G., and Orkand, R. K., 1966, Physiological properties of glial cells in the central nervous system of amphibia, J. Neurophysiol. 29: 768–787.PubMedGoogle Scholar
  89. Kukcs, G., Elul, R., and de Vellis, J., 1976, The ionic basis of the membrane potential in a rat glial cell line, Brain Res. 104: 71–92.CrossRefGoogle Scholar
  90. Kullberg, R., 1987, Stretch-activated ion channels in bacteria and animal cell membranes, Trends Neurosci. 10: 38–39.CrossRefGoogle Scholar
  91. Landis, D. M. D., and Reese, T. S., 1981, Membrane structure in mammalian astrocytes: A review of freeze-fracture studies on adult, developing, reactive and cultured astrocytes, J. Exp. Biol. 95: 35–48.PubMedGoogle Scholar
  92. Lingjaerde, O., Jr., 1971, Uptake of serotonin in blood platelets in vitro. 1. The effects of chloride, Acta Physiol. Scand. 81: 75–83.CrossRefGoogle Scholar
  93. Lowe, A. G., and Lambert, A., 1983, Chloride—bicarbonate exchange and related transport processes, Biochim. Biophys. Acta 694: 353–374.Google Scholar
  94. Lund-Anderson, H., and Hertz, L., 1970, Effects of potassium and of glutamate on swelling and on sodium and potassium content in brain cortex slices from adult rats, Exp. Brain Res. 11: 199–212.Google Scholar
  95. Moller, M., Mollgard, K., Lund-Anderson, H., and Hertz, L., 1974, Concordance between morphological and biochemical estimates of fluid spaces in rat brain cortex slices, Exp. Brain Res. 22: 299–314.Google Scholar
  96. Morales, H. P., and Schousboe, A., 1988, Volume regulation in astrocytes: A role for taurine as an osmoeffector, J. Neurosci. Res. 29: 505–509.CrossRefGoogle Scholar
  97. Nelson, L. R., Auen, E. L., Bourke, R. S., Barron, K. D., Malik, A. B., Cragoe, E. J., Jr., Popp, A. J., Waldman, J. B., Kimelberg, H. K., Foster, V. V., Creel, W., and Schuster, L., 1982, A comparison of animal head injury models developed for treatment modality evaluation, in: Head Injury: Basic and Clinical Aspects ( R. G. Grossman and P. L. Gildenberg, eds.), Raven Press, New York, pp. 117–127.Google Scholar
  98. Nicholls, J. G., and Kuffler, S. W., 1964, Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: Ionic composition of glial cells and neurons, J. Neurophysiol. 27: 645–671.PubMedGoogle Scholar
  99. Nowak, L., Ascher, P., and Berwald-Netter, Y., 1987, Ionic channels in mouse astrocytes in culture, J. Neurosci. 7: 101–109.PubMedGoogle Scholar
  100. Orkand, R. K., 1977, Glial cells, in: Handbook of Physiology—The Nervous System, Volume I, Part 2 ( E. R. Kandel, ed.), American Physiological Society, Bethesda, pp. 855–875.Google Scholar
  101. Plum, F., 1983, What causes infarction in ischemic brain? Neurology 33: 222–233.PubMedCrossRefGoogle Scholar
  102. Ransom, B. R., Yamate, G. L., and Connors, B. W., 1985, Activity-dependent shrinkage of extracellular space in rat optic nerve: A developmental study, J. Neurosci. 5: 532–535.PubMedGoogle Scholar
  103. Rothman, S. M., and Olney, J. M., 1987, Excitotoxicity and the NMDA receptor, Trends Neurosci. 10: 299–302.CrossRefGoogle Scholar
  104. Russell, J. M., and Boron, W. F., 1976, Role of chloride transport in regulation of intracellular pH, Nature 264: 73–74.PubMedCrossRefGoogle Scholar
  105. Sachs, F., 1988, Mechanical transduction in biological systems. CRC Crit. Rev. Biomed. Eng. 16: 141–149.Google Scholar
  106. Sarkadi, B., Attisano, L., Grinstein, S., Buchwald, M., and Rothstein, A., 1984, Volume regulation of Chinese hamster ovary cells in anisoosmotic media, Biochim. Biophys. Acta 774: 159–168.PubMedCrossRefGoogle Scholar
  107. Schlue, W.-R., and Deitmer, J. W., 1988, Ionic mechanisms of intracellular pH regulation in the nervous system, in: Proton Passage Across Cell Membranes, CIBA Foundation Symposium 139, Wiley, Chichester, England, pp. 47–69.Google Scholar
  108. Schmidt, W. F., III, and McManus, T. J., 1977, Ouabain-insensitive salt and water movements in duck red cells, J. Gen. Physiol. 70: 59–79.PubMedCrossRefGoogle Scholar
  109. Schousboe, A., 1972, Development of potassium effects on ion concentrations and indicator spaces in rat brain cortex slices during postnatal ontogenesis, Exp. Brain Res. 15: 521–531.PubMedCrossRefGoogle Scholar
  110. Siebens, A. W., 1985, Cellular volume control, in: The Kidney: Physiology and Pathophysiology ( D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 91–115.Google Scholar
  111. Siesjo, B. K., 1984, Cerebral circulation and metabolism, J. Neurosurg. 60: 883–908.PubMedCrossRefGoogle Scholar
  112. Smith, Q. R., Johanson, C. E., and Woodbury, D. M., 1981, Uptake of 35C1- and 22Na+ by the brain–cerebrospinal fluid system: Comparison of the permeability of the blood–brain and blood–cerebrospinal fluid barriers, J. Neurochem. 37: 117–124.PubMedCrossRefGoogle Scholar
  113. Sonnhof, U., 1987, Single voltage-dependent K+ and Cl- channels in cultured rat astrocytes, Can. J. Physiol. Pharmacol. 65: 1043–1050.PubMedCrossRefGoogle Scholar
  114. Stein, W. D., 1986, Transport and Diffusion Across Cell Membranes, Academic Press, New York, pp. 425–474.Google Scholar
  115. Thomas, R. C., 1977, The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones, J. Physiol. (London) 273: 317–338.Google Scholar
  116. Tosteson, D. C., 1981, Cation countertransport and cotransport in human red cells, Fed. Proc 40: 1429–1433.PubMedGoogle Scholar
  117. Tower, D. B., and Bourke, R. S., 1966, Fluid compartmentation and electrolytes of cat cerebral cortex in vitro. III. Ontogenetic and comparative aspects, J. Neurochem. 13: 1119–1137.PubMedCrossRefGoogle Scholar
  118. Van Gelder, N. M., 1983, A central mechanism of action for taurine: Osmoregulation, bivalent cations, and excitation threshold, Neurochem. Res. 8: 687–699.PubMedCrossRefGoogle Scholar
  119. Walz, W., and Hertz, L., 1984, Intense furosemide-sensitive potassium accumulation in the presence of pathologically high extracellular potassium levels, J. Cerebral Blood Flow Metab. 4: 301–304.CrossRefGoogle Scholar
  120. Walz, W., and Schlue, W. R., 1982, External ions and membrane potential of leech neuropil glial cells, Brain Res. 239: 119–138.PubMedCrossRefGoogle Scholar
  121. Walz, W., Wuttke, W., and Hertz, L., 1984, Astrocytes in primary cultures: Membrane potential characteristics reveal exclusive potassium conductance and potassium accumulator properties, Bruin Res. 292: 367–374.CrossRefGoogle Scholar
  122. Waniewski, R. A., and Martin, D. L., 1984, Characterization of L-glutamic acid transport by glioma cells in culture: Evidence for sodium-independent, chloride-dependent high affinity influx, J. Veurosci. 4: 2237–2246.Google Scholar
  123. Warnock, D. G., Greger, R., Dunham, P. B., Benjamin, M. A., Frizzell, R. A., Field, M., Spring, K. R., Ives, H. E., Aronson, P. S., and Seifter, J., 1983, Ion transport processes in apical membrane of epithelia, Fed. Proc. 43: 2473–2487.Google Scholar
  124. Wolpaw, E. W., and Martin, D. L., 1984, Cl- transport in a glioma cell line: Evidence for two transport mechanisms, Brain Res. 297: 317–327.PubMedCrossRefGoogle Scholar
  125. Zak, B., Collet, A., Monge, M., Ollier-Hartman, M. P., Jacque, C., Hartman, L., and Baumann, N. A., 1984, Tamm-Horsfall protein, a kidney marker is expressed on brain sulfogalactosylceramide-positive astroglial structures, Brain Res. 291: 182–187.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. K. Kimelberg
    • 1
  1. 1.Division of Neurosurgery, Departments of Biochemistry and Pharmacology/Toxicology, and Program in NeuroscienceAlbany Medical CollegeAlbanyUSA

Personalised recommendations