Skip to main content

Intracellular Cl Regulation and Synaptic Inhibition in Vertebrate and Invertebrate Neurons

  • Chapter
Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells

Abstract

Cl movements across plasma membrane channels and carriers play a central role in a number of mechanisms essential for neuronal function and survival. These include regulation and maintenance of intracellular pH (Boron, 1983; Thomas, 1984; see Russell and Boron, this volume), regulation and maintenance of cell volume (Ballanyi and Grafe, 1988; see Chapter 2, this volume), and modulation of neuronal excitability through anion channels activated by inhibitory neurotransmitters (Alger, 1985; Barker, 1985; Roberts, 1986; Siggins-Gruol, 1986), intracellular Ca2+ (see Mayer et al.,this volume), or transmembrane voltage (see Chesnoy-Marchais, this volume). Furthermore, Cl has recently been shown to exert modulatory effects on G proteins (Deterre et al., 1983; Higashijima et al., 1987). The latter are known to be an essential part of the intracellular messenger machinery coupling receptor binding of neurotransmitters (or hormones) to their specific cell responses. All the above considerations make evident the importance of understanding the mechanisms by which Cl is regulated and maintained in nerve cells. Given the wide spectrum of the subjects involved, the present account will be confined to considering Cl regulation in relation to inhibitory neurotransmitter actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aickin, C. C., Deisz, R. A., and Lux, H. D., 1982, Ammonium action on postsynaptic inhibition in crayfish neurones: Implications for the mechanism of chloride extrusion, J. Physiol. (London) 329:319–339.

    CAS  Google Scholar 

  • Aickin, C. C., Deisz, R. A., and Lux, H. D., 1984, Mechanisms of chloride transport in crayfish stretch receptor neurones and guinea pig vas deferens: Implications for inhibition mediated by GABA, Neurosci. Lett. 97: 239–244.

    Article  Google Scholar 

  • Akaike, N., Hattori, K., Inomata, N., and Oomura, Y., 1985, y-Aminobutyric-acid-and pentobarbitonegated chloride currents in internally perfused frog sensory neurones, J. Physiol. (London) 360: 367–386.

    Google Scholar 

  • Alger, B. E., 1985, GABA and glycine: Postsynaptic actions, in: Neurotransmitter Actions in the Vertebrate Nervous System ( M. A. Rogawski and J. L. Barker, eds.), pp. 33–69, Plenum Press, New York.

    Chapter  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1982, Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro, J. Physiol. (London) 328: 125–141.

    CAS  Google Scholar 

  • Alger, B. E., and Nicoll, R. A., 1983, Ammonia does not selectively block IPSPs in rat hippocampal pyramidal cells, J. Neurophysiol. 49: 1381–1391.

    PubMed  CAS  Google Scholar 

  • Allakhverdov, B. L., Burovina, I. V., Chmykhova, N. M., and Shapovalov, A. I., 1980, Electron probe x-ray microanalysis of intracellular sodium, potassium and chlorine contents in amphibian motoneurones, Neuroscience 5: 2023–2031.

    Article  PubMed  CAS  Google Scholar 

  • Allen, G. I., Eccles, J., Nicoll, R. A., Oshima, T., and Rubia, F. J., 1977, The ionic mechanisms concerned in generating the IPSPs of hippocampal pyramidal cells, Proc. R. Soc. London Ser. B 198: 363–384.

    Article  CAS  Google Scholar 

  • Altamirano, A. A., and Russell, J. M., 1987, Coupled Na/K/Cl efflux. “Reverse” unidirectional fluxes in squid giant axons, J. Gen. Physiol. 89: 669–686.

    Article  PubMed  CAS  Google Scholar 

  • Altamirano, A. A., Breitwieser, G. E., and Russell, J. M., 1989, Na+,K+,Cl- coupled transport in squid axon, Acta Physiol. Scand. 136 (Suppl. 582): 16.

    Google Scholar 

  • Alvarez-Leefmans, F. J., and Noguerdn, I., 1989, Intracellular chloride homeostasis in vertebrate nerve cells, Acta Physiol. Scand. 136(Suppl. 582):17.

    Google Scholar 

  • Alvarez-Leefmans, F. J., Gamino, S. M., and Giraldez, F., 1986, Direct demonstration that chloride ions are not passively distributed across the membrane of dorsal root ganglion cells of the frog: Preliminary studies on the nature of the chloride pump, Biophys. J. 49: 413a.

    Google Scholar 

  • Alvarez-Leefmans, F. J., Giraldez, F., and Gamino, S. M., 1987, Intracellular chloride regulation in vertebrate sensory neurones, Neuroscience 22 (Suppl.): 5200.

    Google Scholar 

  • Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Nogueron, I., 1988, Intracellular chloride regulation in amphibian dorsal root ganglion neurones studied with ion-selective microelectrodes, J. Physiol. (London) 406: 225–246.

    CAS  Google Scholar 

  • Andersen, P., Dingledine, R., Gjerstad, L., Langmoen, 1. A., and Laursen, A., 1980, Two different responses of hippocampal pyramidal cells to application of gamma-amino butyric acid, J. Physiol. (London) 305: 279–296.

    CAS  Google Scholar 

  • Ascher, P., Kunze, D., and Neild, T. O., 1976, Chloride distribution in Aplysia neurons, J. Physiol. (London) 256: 441–464.

    CAS  Google Scholar 

  • Ballanyi, K., and Grafe, P., 1985, An intracellular analysis of y-aminobutyric-acid-associated ion movements in rat sympathetic neurons, J. Physiol. (London) 365: 41–58.

    Google Scholar 

  • Ballanyi, K., and Grafe, P., 1988, Cell volume regulation in the nervous system, Renal Physiol. Biochem. 3–5: 142–157.

    Google Scholar 

  • Ballanyi, K., Grafe, P., Reddy, M. M., and Ten Bruggencate, G., 1984, Different types of potassium transport linked to carbachol and y-aminobutyric acid actions in rat sympathetic neurons, Neuroscience 12: 917–927.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., 1985, GABA and glycine: Ion channel mechanisms, in: Neurotransmitter Actions in the Vertebrate Nervous System ( M. A. Rogawski and J. L. Barker, eds.), pp. 71–100, Plenum Press, New York.

    Chapter  Google Scholar 

  • Barker, J. L., and Nicoll, R. A., 1972, Gamma-aminobutyric acid. Role in primary afferent depolarization, Science 176: 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  • Barker, J. L., and Nicoll, R. A. 1973, The pharmacology and ionic dependency of amino acid responses in the frog spinal cord, J. Physiol. (London) 228: 259–277.

    CAS  Google Scholar 

  • Barker, J. L., and Ransom, B. R., 1978, Amino acid pharmacology of mammalian central neurones grown in tissue culture, J. Physiol. (London) 280: 331–354.

    CAS  Google Scholar 

  • Barker, J. L., Nicoll, R. A., and Padjen, A., 1975, Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses, J. Physiol. (London) 245: 521–536.

    CAS  Google Scholar 

  • Ben-Art, Y., Krnjevié, K., and Reinhardt, W., 1979, Hippocampal seizures and failure of inhibition, Can. J. Physiol. Pharmacol. 57: I462–1466.

    Google Scholar 

  • Benninger, C., Kadis, J., and Prince, D. A., 1980, Extracellular calcium and potassium change; in hippocampal slices, Brain Res. 187: 165–182.

    Article  PubMed  CAS  Google Scholar 

  • Boistel, J., and Fatt, P., 1958, Membrane permeability change during inhibitory transmitter action in crustacean muscle, J. Physiol. (London) 144: 176–191.

    CAS  Google Scholar 

  • Bolz, J., and Gilbert, C. D., 1986, Generation of end-inhibition in the visual cortex via interlaminar connections, Nature 320: 362–364.

    Article  PubMed  CAS  Google Scholar 

  • Bormann, J., Hamill, O. P., and Sakmann, B., 1987, Mechanism of anion permeation through channels gated by glycine and -y-aminobutyric acid in mouse cultured spinal neurones, J. Physiol. (London) 385: 243–286.

    CAS  Google Scholar 

  • Boron, W. F., 1983, Transport of H+ and of ionic weak acids and bases, J. Membr. Biol. 72: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Boron, W. F., 1985, Intracellular pH-regulating mechanism of the squid axon, J. Gen. Phy.siol. 85: 325–345.

    Google Scholar 

  • Boron, W. F., and De Weer, P., 1976, Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors, J. Gen. Physiol. 67: 91–112.

    Article  PubMed  CAS  Google Scholar 

  • Boron, W. F., and Russell, J. M., 1983, Stoichiometry and ion dependencies of the intracellular-pHregulating mechanism in squid giant axons, J. Gen. Physiol. 81: 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Boron, W. F., Russell, J. M., Brodwick, M. S., Keifer, D. W., and Roos, A., 1978, Influence of cyclic AMP on intracellular pH regulation and chloride fluxes in barnacle muscle fibers, Nature 276: 511–513.

    Article  PubMed  CAS  Google Scholar 

  • Bowery, N. G., Hill, D. R., Hudson, A. L., Price, G. W., Turnbull, M. J., and Wilkin, G. P., 1984, Heterogeneity of mammalian GABA receptors, in: Actions and Interactions of GABA and Benzodiazepines ( N. G. Bowery, ed.), pp. 81–108, Raven Press, New York.

    Google Scholar 

  • Brazy, P., and Gunn, R. B., 1976, Furosemide inhibition of CI transport in human red blood cells, J. Gen. Physiol. 68: 583–599.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., and Kunze, D. L., 1974, Ionic activities in identifiable Aplysia neurons, in: Ion-Selective Microelectrodes ( H. J. Berman and N. C. Hebert, eds.), pp. 57–73, Plenum Press, New York.

    Chapter  Google Scholar 

  • Brown, A. M., Walker, J. L., and Sutton, R. B., 1970, Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons, J. Gen. Physiol. 56: 559–582.

    Article  PubMed  CAS  Google Scholar 

  • Brown, H. M., Ottoson, D., and Rydquist, B., 1978, Crayfish stretch receptor: An investigation with voltage-clamp and ion-sensitive electrodes, J. Physiol. (London) 284: 155–180.

    CAS  Google Scholar 

  • Brown, T. H., Perkel, D. H., Norris, J. C., and Peacock, J. N., 1981, Electrotonic structure and specific membrane properties of mouse dorsal root ganglion neurons, J. Neurophysiol. 45: 1–15.

    PubMed  CAS  Google Scholar 

  • Brugnara, C., Thuong, V. H., and Tosteson, D. C., 1989, Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells, Am. J. Physiol. 256: 994–1003.

    Google Scholar 

  • Bührle, C. P., and Sonnhof, U., 1983, Intracellular ion activities and equilibrium potentials in motoneurones and glia cells of the frog spinal cord, Pfluegers Arch. 396: 144–153.

    Article  Google Scholar 

  • Bührle, C. P., and Sonnhof, U., 1985, The ionic mechanism of postsynaptic inhibition in motoneurons of the frog spinal cord, Neuroscience 14: 581–592.

    Article  PubMed  Google Scholar 

  • Burke, R. E., and Rudomin, P., 1977, Spinal neurons and synapses, in: Handbook of Physiology, Section 1, The Nervous System, Volume 1, Cellular Biology of Neurons, Part 2 ( E. R. Kandel, ed.), pp. 877–944, American Physiological Society, Bethesda.

    Google Scholar 

  • Cherksey, B. D., and Zeuthen, T., 1987, A membrane protein with a K+ and a Cl- channel, Act Physiol. Scand. 129: 137–138.

    CAS  Google Scholar 

  • Chester, M., 1986, Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus, J. Physiol. (London) 381: 241–261.

    Google Scholar 

  • Chesler, M., 1987, pH regulation in the vertebrate central nervous system: Microelectrode studies in the brain stem of the lamprey, Can. J. Physiol. Pharmacol. 65: 986–993.

    Google Scholar 

  • Chipperfield, A. R., 1986, The (Na+-K+ -Cl) cotransport system, Clin. Sci. 71: 465–467.

    PubMed  CAS  Google Scholar 

  • Connors, B. W., Malenka, R. C., and Silva, L. R., 1988, Two inhibitory postsynaptic potentials and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat, J. Physiol. (London) 406: 443–468.

    CAS  Google Scholar 

  • Constanti, A., and Nistri, A., 1976, A comparative study of the action of y-aminobutyric acid and piperazine on the lobster muscle fiber and the spinal cord, Br. J. Pharmacol. 57: 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential, J. Physiol. (London) 130: 326–373.

    CAS  Google Scholar 

  • Corcia, A., and Armstrong, W. M., 1983, KCI cotransport: A mechanism for basolateral chloride exit in Necturus gallbladder, J. Membr. Biol. 76: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Cornwall, M. C., Peterson, D. F., Kunze, D. L., Walker, J. L., and Brown, A. M., 1970, Intracellular potassium and chloride activities measured with liquid ion exchanger microelectrodes, Brain Res. 23: 433–436.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Actions of amino acids on the isolated hemisected spinal cord of the toad, Br. J. Pharmacol. Chemother. 16: 262–283.

    Article  PubMed  CAS  Google Scholar 

  • Davidoff, R. A., and Hackman, J. C., 1984, Spinal inhibition, in: Handbook of the Spinal Cord, Volume 2, Anatomy and Physiology of the Spinal Cord, ( R. A. Davidoff, ed.), pp. 385–459, Dekker, New York.

    Google Scholar 

  • Davidoff, R. A., and Hackman, J. C., 1985, GABA: Presynaptic actions, in: Neurotransmitter Actions in the Vertebrate Nervous System ( M. A. Rogawski and J. L. Barker, eds.), pp. 3–32, Plenum Press, New York.

    Chapter  Google Scholar 

  • DeGroat, W. C., 1972, GABA-depolarization of a sensory ganglion: Antagonism by picrotoxin and bicuculline, Brain Res. 38: 429–439.

    Article  CAS  Google Scholar 

  • Deisz, R. A., and Lux, H. D., 1982, The role of intracellular chloride in hyperpolarizing postsynaptic inhibition of crayfish stretch receptor neurones, J. Physiol. (London) 326: 123–138.

    CAS  Google Scholar 

  • Desarmenien, M., Feltz, P., Occhipinti, G., Santangelo, F., and Schlichter, R., 1984, Coexistence of GABAA and GABA13 receptors on A and C primary afferents, Br. J. Pharmacol. 81: 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Deschenes, M., Feltz, P., and Lamour, Y., 1976, A model for an estimate in vivo of the ionic basis of presynaptic inhibition: An intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia, Brain Res. 118: 486–493.

    Article  PubMed  CAS  Google Scholar 

  • Deterre, P., Gozlan, H., and Bockaert, J., 1983, GTP-dependent anion-sensitive adenylate cyclase in snail ganglia potentiation of neurotransmitter effects, J. Biol. Chem. 258: 1467–1473.

    PubMed  CAS  Google Scholar 

  • Dingledine, R., and Langmoen, I. A., 1980, Conductance changes and inhibitory actions of hippocampal recurrent IPSPs, Brain Res. 185: 277–287.

    Article  PubMed  CAS  Google Scholar 

  • Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GABA in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol. 52: 1066–1093.

    PubMed  CAS  Google Scholar 

  • Eccles, J. C., 1957, The Physiology of Nerve Cells, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Eccles, J. C., 1964a, The Physiology of Synapses, Springer, Berlin.

    Book  Google Scholar 

  • Eccles, J. C., 1964b, Presynaptic inhibition in the spinal cord, Prog. Brain Res. 12: 65–89.

    Article  CAS  Google Scholar 

  • Eccles, J. C., 1969, The Inhibitory Pathways of the Central Nervous System, Thomas, Springfield, Ill.

    Google Scholar 

  • Eccles, J. C., Eccles, R. M., and Ito, M., 1964a, Effects of intracellular potassium and sodium injection on the inhibitory postsynaptic potential, Proc. R. Soc. London Ser. B 160: 181–196.

    Article  CAS  Google Scholar 

  • Eccles, J. C., Eccles, R. M., and Ito, M., 1964b, Effects produced on inhibitory postsynaptic potentials by the coupled injections of cations and anions into motoneurones, Proc. R. Soc. London Ser. B 160: 197–210.

    Article  CAS  Google Scholar 

  • Eccles, J., Nicoll, R. A., Oshima, T., and Rubia, F. J., 1977, The anionic permeability of the inhibitory postsynaptic membrane of hippocampal pyramidal cells, Proc. R. Soc. London Ser. B 198: 345–361.

    Article  CAS  Google Scholar 

  • Edwards, C., 1982, The selectivity of ion channels in nerve and muscles, Neuroscience 7: 1355–1366.

    Article  Google Scholar 

  • Ellory, J. C., and Stewart, G. W., 1982, The human erythrocyte Cl--dependent Na—K cotransport system as a possible model for studying the action of loop diuretics, Br. J. Pharmacol. 75: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Ellory, J. C., Dunham, P. B., Logue, P. J., and Stewart, G. W., 1982, Anion-dependent cation transport in erythrocytes, Philos. Trans. R. Soc. London Ser. B 299: 483–495.

    Article  CAS  Google Scholar 

  • Fatt, P., 1974, Postsynaptic cell characteristics determining membrane potential changes, in: Lecture Notes in Biomathematics, Volume 4, Physics and Mathematics of the Nervous System ( M. Conrad, W. Göttinger, and M. Dal Cin, eds.), pp. 150–170, Springer-Verlag, Berlin.

    Google Scholar 

  • Feltz, P., and Rasminsky, M., 1974, A model for the mode of action of GABA on primary afferent terminals: Depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia, Neuropharmacology 13: 553–563.

    Article  PubMed  CAS  Google Scholar 

  • Forsythe, I. D., and Redman, S. J., 1988, The dependence of motoneuron membrane potential on extra-cellular ion concentrations studied in isolated rat spinal cord, J. Physiol. (London) 404: 83–99.

    CAS  Google Scholar 

  • Frank, K., and Fuortes, M. G. F., 1957, Presynaptic and postsynaptic inhibition of monosynaptic reflexes, Fed. Proc. 16: 39–40.

    Google Scholar 

  • Gallagher, J. P., Higashi, H., and Nishi, S., 1978, Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones, J. Physiol. (London) 275: 263282.

    Google Scholar 

  • Gallagher, J. P., Nakamura, J., and Shinnick-Gallagher, P., 1983, The effects of temperature, pH and CI—pump inhibitors on GABA responses recorded from cat dorsal root ganglia, Brain Res. 267: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Galvan, M., Dörge, A., Beck, F., and Rick, R., 1984, Intracellular electrolyte concentrations in rat sympathetic neurones measured with an electron microprobe, Pfluegers Arch. 400: 274–279.

    Article  CAS  Google Scholar 

  • Garay, R. P., Nazaret, C., Hannaert, P. A., and Cragoe, E. J., 1988, Demonstration of a [K F,Cl-]cotransport system in human red cells by its sensitivity to [(dihydroindenyl)oxy]alkanoic acids: Regulation of cell swelling and distinction from the bumetanide-sensitive [Na+,K+,C1-]-cotransport system, Mol. Pharmacol. 33: 696–701.

    PubMed  CAS  Google Scholar 

  • Gardner, D. R., and Moreton, R. B., 1985, Intracellular chloride in molluscan neurons, Comp. Biochem. Physiol. 80A: 461–467.

    Article  Google Scholar 

  • Geck, P., and Heinz, E., 1986, The Na-K-2C1 cotransport system, J. Membr. Biol. 91: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Gerencser, G. A., and Lee, S. H., 1983, Cl- -stimulated adenosine triphosphatase: Existence, location and function, J. Exp. Biol. 106: 143–161.

    PubMed  CAS  Google Scholar 

  • Gold, M. R., and Martin, A. R., 1982, Intracellular CL accumulation reduces CL conductance in inhibitory synaptic channels, Nature 299: 828–830.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27: 37–60.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, R. B., 1985, Bumetanide inhibition of anion exchange in human red blood cells, Biophys. J. 47: 326a.

    Google Scholar 

  • Haas, M., 1989, Properties and diversity of (Na-K-Cl) cotransporters, Annu. Rev. Physiol. 51: 443–457.

    Article  PubMed  CAS  Google Scholar 

  • Harris, G. L., and Betz, W. J., 1987, Evidence for active chloride accumulation in normal and dencrvated rat lumbrical muscle, J. Gen. Physiol. 90: 127–144.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, K., Akaike, N., Oomura, Y., and Kuraoka, S., 1984, Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons, Am. J. Physiol. 246: C259 - C265.

    PubMed  CAS  Google Scholar 

  • Heinemann, V., and Lux, H. D., 1977, Ceiling of stimulus induced rises in extracellular potassium con-centration in the cerebral cortex of the cat, Brain Res. 120: 231–249.

    Article  PubMed  CAS  Google Scholar 

  • Higashijima, T., Ferguson, K. M., and Sternweis, P. C., 1987, Regulation of hormone-sensitive GTPdependent regulatory proteins by chloride, J. Biol. Chem. 262: 3597–3602.

    PubMed  CAS  Google Scholar 

  • Hille, B., 1975, Ionic selectivity of Na and K channels of nerve membranes, in: Membranes: A Series of Advances, Volume 3 ( G. Eisenman, ed.), pp. 255–323, Dekker, New York.

    Google Scholar 

  • Hino, N., 1979, Action of ammonium ions on the resting membrane of crayfish stretch receptor neuron, Jpn. J. Physiol. 29: 99–102.

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (London) 108: 37–77.

    CAS  Google Scholar 

  • Hoffman, E. K., and Simonsen, L. O., 1989, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol. Rev. 69: 315–382.

    Google Scholar 

  • Huguenard, J. R., and Alger, B. E., 1986, Whole cell voltage-clamp study of the fading of GABA-activated currents in acutely dissociated hippocampal neurons, J. Neurophysiol. 56: 1–18.

    PubMed  CAS  Google Scholar 

  • Iles, J. F., and Jack, J. J. B., 1980, Ammonia: Assessment of its action on postsynaptic inhibition as a cause of convulsions, Brain 103: 555–578.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., 1957, The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes, Jpn. J. Physiol. 7: 297–323.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L. L., 1975, Uptake processes for biogenic amines, in: Handbook of Psychopharmacology, Volume 3 ( L. L. Iversen, ed.), pp. 381–442, Plenum Press, New York.

    Google Scholar 

  • Jahnsen, H., and Llinds, R., 1984, Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurons in vitro, J. Physiol. (London) 349: 227–247.

    CAS  Google Scholar 

  • Janigro, D., and Schwartzkroin, P. A., 1988, Effects of GABA on CA3 pyramidal cell dendrites in rabbit hippocampal slices, Brain Res. 453: 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Kaila, K., Pasternack, M., Saarikoski, J., and Voipio, J., 1989, Influence of GABA-gated bicarbonate conductance on membrane potential, current and intracellular chloride in crayfish muscle fibres, J. Physiol. (London) 416:161–181.

    CAS  Google Scholar 

  • Kaneda, M., Wakamori, M., and Akaike, N., 1989, GABA-induced chloride current in rat isolated Purkinje cells, Am. J. Physiol. 256: C1153 - C1159.

    PubMed  CAS  Google Scholar 

  • Kanner, B. I., and Schuldiner, S., 1987, Mechanism of transport and storage of neurotransmitters, CRC Crit. Rev. Biochem. 22: 1–38.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. S., Kmjevié, K., Morris, M. E., and Yim, G. K. W., 1969, Anionic permeability of cortical neurons, Exp. Brain Res. 7: 11–31.

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., and Meech, R. W., 1966a, The internal chloride concentration of H and D cells in the snail brain, Comp. Biochem. Physiol. 19: 819–832.

    Article  CAS  Google Scholar 

  • Kerkut, G. A., and Meech, R. W., 19666, Microelectrode determination of the intracellular chloride concentration in nerve cells, Life Sci. 5: 453–456.

    Google Scholar 

  • Keynan, S., and Kanner, B. I., 1988, y-Aminobutyric acid transport in reconstituted preparations from rat brain: Coupled sodium and chloride fluxes, Biochemistry 27: 12–17.

    Google Scholar 

  • Keynes, R. D., 1963, Chloride in the squid giant axon, J. Physiol. (London) 169: 690–705.

    CAS  Google Scholar 

  • Knepper, M. A., Packer, R., and Good, D. W., 1989, Ammonium transport in the kidney, Physiol. Rev. 69: 179–249.

    PubMed  CAS  Google Scholar 

  • Korn, S. J., Giacchino, J. L., Chamberlin, N. L., and Dingledine, R., 1987, Epileptiform burst activity induced by potassium in the hippocampus and its regulation by GABA-mediated inhibition, J. Neurophysiol. 57: 325–340.

    PubMed  CAS  Google Scholar 

  • Kostyuk, P. G., Veselovsky, N. S., Fedulova, S. A., and Tsyndrenko, A. Y., 1981, Ionic currents in the somatic membrane of rat dorsal root ganglion neurons. III. Potassium currents, Neuroscience 6: 2439–2444.

    Article  PubMed  CAS  Google Scholar 

  • Kregenow, F. M., 1981, Osmoregulatory salt transporting mechanisms: Control of cell volume in anisosmotic media, Ann. Rev. Physiol. 43: 493–505.

    Article  CAS  Google Scholar 

  • Kmjevié, K., 1974, Chemical nature of synaptic transmission in vertebrates, Physiol. Rev. 54: 418–540.

    Google Scholar 

  • Kmjevié, K., 1981, Transmitters in motor systems, in: Handbook of Physiology, Section 2, The Nervous System, Volume II, Motor Control ( V. B. Brooks, ed.), pp. 107–154, American Physiological Society, Baltimore.

    Google Scholar 

  • Kmjevié, K., 1983, GABA-mediated inhibitory mechanisms in relation to epileptic discharges, in: Basic Mechanisms of Neuronal Hyperexcitability ( H. Jasper and N. van Gelder, eds.), pp. 249–280, Liss, New York.

    Google Scholar 

  • Kmjevié, K., 1984, Neurotransmitters in cerebral cortex: A general account, in: Cerebral Cortex, Volume 2, Functional Properties of Cortical Cells ( E. G. Jones and A. Peters, eds.), pp. 39–61, Plenum Press, New York.

    Google Scholar 

  • Kudo, Y., Abe, N., Goto, S., and Fukuda, H., 1975, The chloride-dependent depression by GABA in the frog spinal cord, Eur. J. Pharmacol. 32: 251–259.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, D. L., and Brown, A. M., 1971, Internal potassium and chloride activities and the effects of acetylcholine on identifiable Aplysia neurons, Nature (London) 229: 229–231.

    CAS  Google Scholar 

  • Landry, D. W., Reitman, M., Cragoe, E. J., and Al-Awqati, Q., 1987, Epithelial chloride channel, J. Gen. Physiol. 90: 779–798.

    Article  PubMed  CAS  Google Scholar 

  • Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71: 11–30.

    Article  PubMed  CAS  Google Scholar 

  • Lauf, P. K., 1988, K: Cl cotransport: Emerging Molecular aspects of a ouabain-resistant, volume-responsive transport system in red blood cells, Renal Physiol. Biochem. 3–5: 248–259.

    Google Scholar 

  • Lauf, P. K., McManus, T. J., Haas, M., Forbush, B., Duhm, J., Flatman, P. W., Saier, M. H., and Russell, J. M., 1987, Physiology and biophysics of chloride and cation cotransport across cell membranes, Fed. Proc. 46: 2377–2394.

    Google Scholar 

  • Levy, R. A., 1977, The role of GABA in primary afferent depolarization, Prog. Neurobiol. (Oxford) 9: 211–267.

    Article  CAS  Google Scholar 

  • Lewis, D. V., and Schuette, W. H., 1975, NADH fluorescence and (K+), changes during hippocampal electrical stimulation, J. Neurophysiol. 38: 405–417.

    PubMed  CAS  Google Scholar 

  • Llinâs, R., 1988, The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous function, Science 242: 1654–1664.

    Article  PubMed  Google Scholar 

  • Llinâs, R., and Baker, R., 1972, A chloride-dependent inhibitory postsynaptic potential in cat trochlear motoneurons, J. Neurophysiol. 35: 484–492.

    PubMed  Google Scholar 

  • Llinâs, R., Baker, R., and Precht, W., 1974, Blockage of inhibition by ammonium acetate action on chloride pump in cat trochlear motoneurons, J. Neurophysiol. 37: 522–532.

    PubMed  Google Scholar 

  • Lopez, R., and Alvarez-Leefmans, F. J., 1984, Electrotonic structure and specific membrane properties of frog dorsal root ganglion neurons maintained in vitro, Soc. Neurosci. Abstr. 10 (1): 429.

    Google Scholar 

  • Lux, H. D., 1971, Ammonium and chloride extrusion: Hyperpolarizing synaptic inhibition in spinal motoneurons, Science 173: 555–557.

    Article  PubMed  CAS  Google Scholar 

  • Lux, H. D., Loracher, C., and Neher, E., 1970, The action of ammonium on postsynaptic inhibition of cat spinal motoneurons, xp. Brain Res. 11: 431–447.

    CAS  Google Scholar 

  • Lytle, C., and McManus, T. J., 1987, Effect of loop diuretics and stilbene derivatives on swellin-induced KCI cotransport, J. Gen. Physiol. 90: 28a.

    Google Scholar 

  • McCarren, M., and Alger, B. E., 1985, Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro, J. Neurophysiol. 53: 557–571.

    PubMed  CAS  Google Scholar 

  • Mayer, M. L., and Westbrook, G. L., 1983, A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurons, J. Physiol. (London) 340; 19–45.

    CAS  Google Scholar 

  • Meyer, H., and Lux, H. D., 1974, Action of ammonium on a chloride pump, Pfluegers Arch. 350: 185 - I95.

    Article  CAS  Google Scholar 

  • Misgeld, U., Deisz, R. A., Dodt, H. V., and Lux, H. D., 1986, The role of chloride transport in postsynaptic inhibition of hippocampal neurons, Science 232: 1413–1415.

    Article  PubMed  CAS  Google Scholar 

  • Moody, W. J., 1981, The ionic mechanisms of intracellular pH regulation in crayfish neurons, J. Physiol. (London) 316: 293–308.

    Google Scholar 

  • Moreton, R. B., and Gardner, D. R., 1981, Increased intracellular chloride activity produced by the molluscicide, N-(triphenylmethyl)morpholine (Freston), in Lymnaea stagnalis neurons, Pestle. Biochem. Physiol. 15: 1–9.

    Google Scholar 

  • Moser, H., 1985, Intracellular pH regulation in the sensory neuron of the stretch receptor of the crayfish (Astacus fluviatilis), J. Physiol. (London) 362: 23–38.

    CAS  Google Scholar 

  • Moser, H., 1987, Electrophysiological evidence for ammonium as a substitute for potassium in activating the sodium pump in a crayfish sensory neuron, Can. J. Physiol. Pharmacol. 65: 141–145.

    Article  PubMed  CAS  Google Scholar 

  • Müller, W., Misgeld, U., and Lux, H. D., 1989, y-Aminobutyric acid-induced ion movements in the guinea pig hippocampal slice, Brain Res. 484: 184–191.

    Google Scholar 

  • Nakai, K., Sasaki, K., Matsumoto, M., and Takashima, K., 1988, Effects of furosemide on the resting membrane potentials and the transmitter-induced responses of the Aplysia ganglion cells, Tohoku J. Exp. Med. 156: 79–90.

    Article  PubMed  CAS  Google Scholar 

  • Neild, T. O., and Thomas, R. C., 1974, Intracellular chloride activity and the effects of acetylcholine in snail neurones, J. Physiol. (London) 242: 453–470.

    CAS  Google Scholar 

  • Nelson, M. T., and Blaustein, M. P., 1982, GABA efflux from synaptosomes: Effects of membrane potential, and extemal GABA and cations, J. Membr. Biol. 69: 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Newberry, N. R., and Nicoll, R. A., 1985, Comparison of the action of baclofen with y-aminobutyric acid on rat hippocampal pyramidal cells in vitro, J. Physiol. (London) 360: 161–185.

    CAS  Google Scholar 

  • Nicoll, R. A., 1978, The blockade of GABA mediated responses in the frog spinal cord by ammonium ions and furosemide, J. Physiol. (London) 283: 121–132.

    CAS  Google Scholar 

  • Nicoll, R. A., 1988, The coupling of neurotransmitter receptors to ion channels in the brain, Science 241: 545–551.

    Article  PubMed  CAS  Google Scholar 

  • Nicoll, R. A., and Alger, B. E., 1979, Presynaptic inhibition: Transmitter and ionic mechanisms, Int. Rev. Neurobiol. 21: 217–258.

    Article  PubMed  CAS  Google Scholar 

  • Nishi, S., Minota, S., and Karczmar, A. G., 1974, Primary afferent neurones: The ionic mechanism of GABA-mediated depolarization, Neuropharmacology 13: 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Nistri, A., 1983, Spinal cord pharmacology of GABA and chemically related amino acids, in: Handbook of the Spinal Cord, Volume 1, Spinal Cord Pharmacology ( R. A. Davidoff, ed.), pp. 45–104, Dekker, New York.

    Google Scholar 

  • O’Grady, S. M., Palfrey, H. C., and Field, M., 1987, Characteristics and functions of Na-K-Cl cotransport in epithelial tissues, Am. J. Physiol. 253: 177–192.

    Google Scholar 

  • Olsen, R. W., and Leeb-Lundberg, F., 1981, Convulsant and anticonvulsant drug binding sites related to

    Google Scholar 

  • GABA-regulated chloride ion channels, in: GABA and Benzodiazepine Receptors (E. Costa, G. DiChiara, and G. L. Gessa, eds.), pp. 93–103, Raven Press, New York.

    Google Scholar 

  • Olsen, R. W., and Venter, J. C., 1986, Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Liss, New York.

    Google Scholar 

  • Otsuka, M., and Konishi, S., 1976, GABA in the spinal cord, in: GABA in Nervous System Function ( E. Roberts, T. N. Chase, and D. B. Tower, eds.), pp. 197–202, Raven Press, New York.

    Google Scholar 

  • Padjen, A., Nicoll, R., and Barker, J. L., 1973, Synaptic potentials in the isolated frog spinal cord studied using sucrose gap, J. Gen. Physiol. 61: 270–271.

    Google Scholar 

  • Peterson, R. P., and Pepe, I. A., 1961, The fine structure of inhibitory synapses in the crayfish, J. Biophys. Biochem. Cytol. 11: 159–169.

    Article  Google Scholar 

  • Raabe, W., and Gumnit, R. J., 1975, Disinhibition in cat motor cortex by ammonia, J. Neurophysiol. 38: 347–355.

    PubMed  CAS  Google Scholar 

  • Radian, R., and Kanner, B. I., 1983, Stoichiometry of sodium-and chloride-coupled -y-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain, Biochemistry 22: 1236–1241.

    Article  PubMed  CAS  Google Scholar 

  • Radian, R., and Kanner, B. 1., 1985, Reconstitution and purification of the sodium and chloride-coupled y-aminobutyric acid transporter from rat brain, J. Biol. Chem. 260: 11859–11865.

    PubMed  CAS  Google Scholar 

  • Radian, R., Bendahan, A., and Kanner, B. I., 1986, Purification and identification of the functional sodium-and chloride-coupled y-aminobutyric acid transport glycoprotein from rat brain, J. Biol. Chem. 261: 15437–15441.

    PubMed  CAS  Google Scholar 

  • Reuss, L., 1983, Basolateral KCI cotransport in a NaCI-absorbing epithelium, Nature 305: 723–726.

    Article  PubMed  CAS  Google Scholar 

  • Reuss, L., 1988, Cell volume regulation in nonrenal epithelia, Renal Physiol. Biochem. 3–5: 187–201.

    Google Scholar 

  • Reuss, L., 1989, Ion transport across gallbladder epithelium, Physiol. Rev. 69: 503–545.

    PubMed  CAS  Google Scholar 

  • Roberts, E., 1986, GABA: The road to neurotransmitter status, in: Benzodiazepine/GABA Receptors and

    Google Scholar 

  • Chloride Channels: Structural and Functional Properties,pp. 1–39, Liss, New York.

    Google Scholar 

  • Roos, A., and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61: 296–434.

    PubMed  CAS  Google Scholar 

  • Rudy, B., 1988, Diversity and ubiquity of K channels, Neuroscience 25: 729–749.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., 1976, ATP-dependent chloride influx into squid giant axon, J. Membr. Biol. 28: 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., 1978, Effects of ammonium and bicarbonate-CO2 on intracellular chloride levels in Aplysia neurons, Biophys. J. 22: 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., 1979, Chloride and sodium influx: A coupled uptake mechanism in the squid giant axon, J. Gen. Physiol. 73: 801–818.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., 1980, Anion transport mechanisms in neurons, Ann. N.Y. Acad. Sci. 341: 510–523.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., 1983, Cation-coupled chloride influx in squid axon: Role of potassium and stoichiometry of the transport process, J. Gen. Physiol. 81: 909–925.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. M., 1984, Chloride in the squid giant axon, Curr. Top. Membr. Transp. 22: 177–193.

    Article  CAS  Google Scholar 

  • Russell, J. M., and Boron, W. F., 1982, Intracellular pH regulation in squid giant axons, in: Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions, pp. 221–237, Liss, New York.

    Google Scholar 

  • Russell, J. M., and Brown, A. M., 1972, Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion, J. Gen. Physiol. 60: 499–518.

    Article  PubMed  CAS  Google Scholar 

  • Schlue, W.-R., and Deitmer, J. W., 1988, Ionic mechanisms of intracellular pH regulation in the nervous system, Ciba Found. Symp. 139: 49–69.

    Google Scholar 

  • Schlue, W.-R., and Thomas, R. C., 1985, A dual mechanism for intracellular pH regulation by leech neurons, J. Physiol. (London) 364: 327–338.

    CAS  Google Scholar 

  • Schmidt, R. F., 1963, Pharmacological studies on the primary afferent depolarization of the toad spinal cord, Pfluegers Arch. 277: 325–346.

    Article  CAS  Google Scholar 

  • Schwartzkroin, P. A., and Wheal, H. V., 1984, Electrophysiology of Epilepsy, Academic Press, New York.

    Google Scholar 

  • Serve, G., Endres, W., and Grafe, P., 1988, Continuous electrophysiological measurements of changes in cell volume of motoneurons in the isolated frog spinal cord, Pfluegers Arch. 411: 410–415.

    Article  CAS  Google Scholar 

  • Siggins, G. R., and Gruol, D. L., 1986, Mechanisms of transmitter action in the vertebrate central nervous system, in: Handbook of Physiology, Section I, The Nervous System, Volume 14, ( T. E. Bloom, ed.), pp. 1–114, American Physiological Society, Bethesda.

    Google Scholar 

  • Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Volume 2, Functional Properties of Cortical Cells ( E. G. Jones and A. Peters, eds.), pp. 91–117, Plenum Press, New York.

    Google Scholar 

  • Simmonds, M. A., 1984, Physiological and pharmacological characterization of the actions of GABA, in: Actions and Interactions of GABA and Benzodiazepines ( N. G. Bowery, ed.), pp. 27–40, Raven Press, New York.

    Google Scholar 

  • Somjen, G. G., 1979, Extracellular potassium in the mammalian central nervous system, Annu. Rev. Physiol. 41: 159–177.

    Article  PubMed  CAS  Google Scholar 

  • Stein, W. D., 1986, Transport and Diffusion across Cell Membranes, Academic Press, New York. Steriade, M., and Llinâs, R., 1988, The functional states of the thalamus and the associated neuronal interplay, Physiol. Rev. 68: 649–736.

    Google Scholar 

  • Tanaka, C., and Taniyama, K., 1986, GABA transport in peripheral tissues: Uptake and efflux, in: GABAergic Mechanisms in the Mammalian Periphery ( S. L. Erdö and N. G. Bowery, eds.), pp. 57–72, Raven Press, New York.

    Google Scholar 

  • Thomas, R. C., 1976, The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones, J. Physiol. (London) 255: 715–735.

    CAS  Google Scholar 

  • Thomas, R. C., 1977, The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones, J. Physiol. (London) 273; 317–338.

    CAS  Google Scholar 

  • Thomas, R. C., 1984, Experimental displacement of intracellular pH and the mechanism of its subsequent recovery, J. Physiol. (London) 354: 3P - 22 P.

    CAS  Google Scholar 

  • Thomas, R. C., and Cohen, C. J., 1981, A liquid ion-exchanger alternative to KCI for filling intracellular reference microelectrodes, Pfluegers Arch. 390: 96–98.

    Article  CAS  Google Scholar 

  • Thompson, S. M., and Gähwiler, B. H., I989a, Activity-dependent disinhibition. 1. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro, J. Neurophysiol. 61: 501–511.

    Google Scholar 

  • Thompson, S. M., and Gähwiler, B. H., 19896, Activity-dependent disinhibition. 11. Effects of extracellular potassium, furosemide, and membrane potential on Eel— in hippocampal CA3 neurons, J. Neurophysiol. 61: 512–523.

    Google Scholar 

  • Thompson, S. M., Deisz, R. A., and Prince, D. A., 1988a, Outward chloride/cation cotraisport in mammalian cortical neurons, Neurosci. Leu. 89: 49–54.

    Article  CAS  Google Scholar 

  • Thompson, S. M., Deisz, R. A., and Prince, D. A., 1988b, Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons, J. Neurophysiol. 60: 105–124.

    PubMed  CAS  Google Scholar 

  • Traub, R. D., Miles, R., and Wong, R. K. S., 1989, Model of the origin of rhythmic population os:illations in the hippocampal slice, Science 243: 1319–1325.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan-Jones, R. D., 1988, Regulation of intracellular p1-I in cardiac muscle, Ciba Found. Symp. 139: 2346.

    Google Scholar 

  • Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T.. and Ketcham, R., 1989, Synthesis and characterization of improved chloride sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.

    Article  PubMed  CAS  Google Scholar 

  • Vitoux, D., Oliviero, O., Garay, R. P., Cragoe, E. J., Galacteros, F., and Benzard, Y., 1989, Inhibition of K ± efflux and dehydration of sickle cells by [(dihydroindenyl)oxy]alkanoic acid: An inhibitor of the K+,Cl- cotransport system, Proc. Natl. Acad. Sci. USA 86: 4273–4276.

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe, J. H., Nathanson, I. T., and Highland, E., 1983, Effects of loop diuretics on ion transport by dog tracheal epithelium, Am. J. Physiol. 245: C388 - C396.

    PubMed  CAS  Google Scholar 

  • Wojtowicz, J. M., and Nicoll, R. A., 1982, Selective action of piretamide on primary afferent GABA responses in the frog spinal cord, Brain Res. 236: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S., and Watkins, D. J., 1982, Cellular factors influencing GABA response in hippocampal pyramidal cells, J. Neurophysiol. 48: 938–951.

    PubMed  CAS  Google Scholar 

  • Yudilevich, D. L., and Boyd, C. A. R., 1987, Amino Acid Transport in Animal Cells, Physiological Society Study Guides, No. 2, Manchester University Press, Great Britain.

    Google Scholar 

  • Zelikovic, I., Stejskal-Lorenz, E., Lohstroh, P., Budreau, A., and Chesney, R. W., 1989, Anion dependence of taurine transport by rat renal brush border membrane vesicles, Am. J. Physiol. 256: 646–655.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvarez-Leefmans, F.J. (1990). Intracellular Cl Regulation and Synaptic Inhibition in Vertebrate and Invertebrate Neurons. In: Alvarez-Leefmans, F.J., Russell, J.M. (eds) Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9685-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9685-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9687-2

  • Online ISBN: 978-1-4757-9685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics