Skip to main content

Principles of Cell Volume Regulation Ion Flux Pathways and the Roles of Anions

  • Chapter
Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells

Abstract

The goal of this chapter is to discuss general principles of cell volume regulation (in response to osmotic swelling and shrinkage) with particular emphasis on the ion flux pathways. While other chapters in this volume deal with various aspects of neuronal, glial, or muscle cell function, the present chapter will draw upon data from studies performed on red blood cells. The emphasis upon blood cells reflects the relative ease with which volume regulation by cells in suspension can be studied and not the biological importance of volume regulation by such cells. While changes in the cell volume of circulating cells can result in changes in blood viscosity and altered rheologic properties, disruption of neural cell volume can result in altered cable properties and consequent effects upon neural integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adorante, J. S., and Cala, P. M., 1987, Activation of electroneutral K flux in Amphiuma red blood cells by N-ethylmaleimide: Distinction between K/H exchange and KCI cotransport, J. Gen. Physiol. 90: 209–227.

    Article  PubMed  CAS  Google Scholar 

  • Altamirano, A. A., and Russell, J. M., 1987, Coupled Na/K/Cl efflux: “Reverse” unidirectional fluxes in squid giant axons, J. Gen. Physiol. 89: 669–686.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, P. K., and Cossins, A. R., 1984, Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes, J. Physiol. (London) 347: 361–375.

    CAS  Google Scholar 

  • Cala, P. M., 1980, Volume regulation by Amphiuma blood cells. The membrane potential and its implication regarding the nature of the ion-flux pathways, J. Gen. Physiol. 76: 683–708.

    Article  PubMed  CAS  Google Scholar 

  • Cala, P. M., 1983a, Volume regulation by red blood cells: Mechanism of ion transport, Mol. Physiol. 4: 33–52.

    CAS  Google Scholar 

  • Cala, P. M., 1983b, Cell volume regulation by Amphiuma blood cells. The role of Ca as a modulator of alkali/H exchange, J. Gen. Physiol. 82: 761–784.

    Article  PubMed  CAS  Google Scholar 

  • Cala, P. M., 1985, Volume regulation by Amphiuma red blood cells: Strategies for identifying alkali metal/H transport, Fed. Prot.. 44: 2500–2507.

    CAS  Google Scholar 

  • Cala, P. M., Mandel, L. J., and Murphy, E., 1986, Measurement of cytosolic free Ca during volume regulation in Amphiuma red blood cells, Am. J. Physiol. 19: C423 - C429.

    Google Scholar 

  • Corcia, A., and Armstrong, W. M., 1983, KCI cotransport: A mechanism for basolateral chloride exit in Necturus gallbladder, J. Membr. Biol. 76: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Duhm, J., 1987, Furosemide-sensitive K (Rb) transport in human erythrocytes: Modes of operation, dependence on extracellular and intracellular Na, kinetics, pH dependency, and the effect of cell volume and N-ethylmaleimide, J. Membr. Biol. 98: 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Duhm, J., and Gobel, B. O., 1984, Chloride-dependent, furosemide-sensitive K transport in human and rat erythrocytes. Dependence on external Na, internal Na, and cell volume, Pfluegers Arch. 402(Suppl.): RI 1

    Google Scholar 

  • Ellory, J. C., and Dunham, P. B., 1980, Volume-dependent passive potassium transport in LK sheep red cells, in: Membrane Transport in Erythrocytes ( U. V. Lassen, H. H. Ussing, and J. O. Wieth, eds.), Alfred Benzon Symposium XIV, Munksgaard, Copenhagen, pp. 409–423.

    Google Scholar 

  • Geck, P., and Heinz, E., 1986, The Na-K-2C1 cotransport system, J. Membr. Biol. 91: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Geck, P., Pietrzyk, C., Burckhardt, B.-C., Pfeiffer, B., and Heinz, E., 1980, Electrically silent cotransport of Na+, K+, and Cl- in Ehrlich cells, Biochim. Biophys. Acta 600: 432–447.

    Article  PubMed  CAS  Google Scholar 

  • Grinstein, S., and Rothstein, A., 1986, Topical review: Mechanisms and regulation of the Na/H exchanger, J. Membr. Biol. 90: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Grinstein, S., Clark, C. A., DuPre, A., and Rothstein, A., 1982, Volume-induced increase of anion permeability in human lymphocytes, J. Gen. Physiol. 80: 801–823.

    Article  PubMed  CAS  Google Scholar 

  • Grinstein, S., Rothstein, A., Sarkadi, B., and Gelfand, E. W., 1984, Responses of lymphocytes to anisotonic media: Volume-regulating behavior, Am. J. Physiol. 246: C204 - C215.

    PubMed  CAS  Google Scholar 

  • Haas, M., and McManus, T. J., 1985, Effect of norepinephrine on swelling-induced potassium transport in duck red cells: Evidence against a volume-regulatory decrease under physiological conditions, J. Gen. Physiol. 85: 649–667.

    Article  PubMed  CAS  Google Scholar 

  • Haas, M., Schmidt, W. F., and McManus, T. J., 1982, Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na-K-2C1] co-transport, J. Gen. Physiol. 80: 125–147.

    Article  PubMed  CAS  Google Scholar 

  • Hazama, A., and Okada, Y., 1987, Electrophysiological evidence for independent activation of K and CI conductances during regulatory volume decrease in cultured epithelial cells [abstract], Eur Soc. Comp. Physiol. Biochem. 9th Conference.

    Google Scholar 

  • Hoffmann, E. K., 1986, Anion transport systems in the plasma membrane of vertebrate cells, Biochim. Biophys. Acta. 864: 1–31.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, E. K., Simonsen, L. O., and Lambert, I. H., 1984, Volume-induced increase in K and Cl permeabilities in Ehrlich ascites tumor cells: Role for internal Ca, J. Membr. Biol. 78: 211–222.

    Article  PubMed  CAS  Google Scholar 

  • Kaji, D., 1986, Volume-sensitive K transport in human erythrocytes, J. Gen. Physiol. 88: 719–738.

    Article  PubMed  CAS  Google Scholar 

  • Knauf, P. A., 1979, Erythrocyte anion exchange and the band 3 protein. Transport kinetics and molecular structure, Curr. Top. Membr. Transp. 12: 249–363.

    Article  CAS  Google Scholar 

  • Kracke, G. R., Anatra, M. A., and Dunham, P. B., 1988, Asymmetry of Na-K-Cl cotransport in human erythrocytes, Am. J. Physiol. 254: C243 - C250.

    PubMed  CAS  Google Scholar 

  • Kramhoft, B., Lambert, I. H., Hoffmann, E. K., and Jorgensen, F., 1986, Activation of C -dependent K transport in Ehrlich ascites tumor cells, Am. J. Physiol. 251: C369 - C379.

    PubMed  CAS  Google Scholar 

  • Kregenow, F. M., 1971, The response of duck red cells to hypertonie media. Further evidence for a volume-controlling mechanism, J. Gen. Physiol. 58: 398–412.

    Google Scholar 

  • Lauf, P. K., 1982, Evidence for chloride-dependent potassium and water transport induced by hyposmotic stress in erythrocytes of the marine teleost, Opsanus tau, J. Comp. Physiol. 146: 9–16.

    CAS  Google Scholar 

  • Lauf, P. K., 1983, Thiol-dependent passive K/CI transport in sheep red cells: I. Dependence on chloride and external K [Rb] ions, J. Membr. Biol. 73: 237–246.

    Article  PubMed  CAS  Google Scholar 

  • Livne, A., Grinstein, S., and Rothstein, A., 1987, Volume-regulating behavior of human platelets, J. Cell Physiol. 131: 354–363.

    Article  PubMed  CAS  Google Scholar 

  • Lytle, C., and McManus, T. J., 1986, A minimal model of INa-K-2CI] co-transport with ordered binding and glide symmetry, J. Gen. Physiol. 88: 36a.

    Google Scholar 

  • Lytle, C., and McManus, T J., 1987, Effect of loop diuretics and stilbene derivatives on swelling-induced [K-CI] co-transport, J. Gen. Physiol. 90: 28a.

    Google Scholar 

  • McManus, T. J., Haas, M., Starke, L. C., and Lytle, C., 1985, The duck red cell model of volume-sensitive chloride-dependent cation transport, Ann. N.Y. Acad. Sci. 456: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • O’Grady, S. M., Palfrey, H. C., and Field, M., 1987, Characteristics and function of Na-K-Cl cotransport in epithelial tissues, Am. J. Physiol. 253: C177 - C192.

    PubMed  Google Scholar 

  • Palfrey, H. C., Feit, P. W., and Greengard, P., 1980, cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics, Am. J. Physiol. 238: C139 - C148.

    Google Scholar 

  • Parker, J. C., 1983, Hemolytic action of potassium salts on dog red blood cells, Am. J. Physiol. 244: C313 - C317.

    PubMed  CAS  Google Scholar 

  • Parker, J. C., 1984, Glutaraldehyde fixation of sodium transport in dog red blood cells, J. Gen. Physiol. 84: 789–803.

    Article  PubMed  CAS  Google Scholar 

  • Parker, J. C., 1988, Na/H exchange and volume regulation in nonepithelial cells, in: Na/H Exchange ( S. Grinstein, ed.), CRC Press, Boca Raton, pp. 179–190.

    Google Scholar 

  • Parker, J. C., and Dunham, P. B., 1989, Passive cation transport, in: Red Cell Membranes: Structure, Function and Clinical Aspects ( P. Agre and J. Parker, eds.), Dekker, New York.

    Google Scholar 

  • Schmidt, W. F., III, and McManus, T. J., 1977, Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions, J. Gen. Physiol. 70: 59–79.

    Article  PubMed  CAS  Google Scholar 

  • Thornhill, W. B., and Laris, P. C., 1984, KCI loss and cell shrinkage in the Ehrlich ascites tumor cell induced by hypotonie media, 2-deoxyglucose, and propanolol, Biochim. Biophys. Acta 773: 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson, P. C., and Robertson, J. S., 1956, Potassium transport in duck red blood cells, J. Cell. Comp. Physiol. 47: 147–166.

    Article  CAS  Google Scholar 

  • Wieth, J. O., and Brahm, J., 1985, Cellular anion transport, in: The Kidney: Physiology and Pathophysiology ( D. W. Seldin and G. Giebisch, eds.), Raven Press, New York, pp. 49–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cala, P.M. (1990). Principles of Cell Volume Regulation Ion Flux Pathways and the Roles of Anions. In: Alvarez-Leefmans, F.J., Russell, J.M. (eds) Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9685-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9685-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9687-2

  • Online ISBN: 978-1-4757-9685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics