Hyperpolarization-Activated Chloride Channels in Aplysia Neurons

  • Dominique Chesnoy-Marchais


In Cl -loaded Aplysia neurons, hyperpolarizing voltage jumps slowly activate an inward current that is carried by Cl ions (Chesnoy-Marchais, 1982, 1983). Recent reports suggest the existence of a similar Cl current in several other preparations. However, the more frequently studied inward currents activated by hyperpolarization are carried either by K+ ions (Hagiwara et al.,1976; Hestrin, 1981; Leech and Stanfield, 1981; Constanti and Galvan, 1983; Sakmann and Trube, 1984; Kurachi, 1985) or by both Na+ and K+ ions (Halliwell and Adams, 1982; Bader et al., 1982; Mayer and Westbrook, 1983; Bader and Bertrand, 1984; DiFrancesco, 1985, 1986; Benham et al., 1987).


Membrane Patch Dibutyryl cAMP Rectal Gland Elementary Conductance Negative Membrane Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, D., and Eckert, R., 1987, Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization, Proc. Natl. Acad. Sci. USA 84: 2518–2522.PubMedCrossRefGoogle Scholar
  2. Ascher, P., and Chesnoy-Marchais, D., 1982, Interactions between three slow potassium responses controlled by three distinct receptors in Aplysia neurones, J. Physiol. (London) 324: 67–92.Google Scholar
  3. Bader, C. R., and Bertrand, D., 1984, Effect of changes in intra-and extracellular sodium on the inward (anomalous) rectification in salamander photoreceptors, J. Physiol. (London) 347: 611–631.Google Scholar
  4. Bader, C. R., Bertrand, D., and Schwartz, E. A., 1982, Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina, J. Physiol. (London) 331: 253–284.Google Scholar
  5. Benham, C. D., Bolton, T. B., Denbigh, J. S., and Lang, R. J., 1987, Inward rectification in freshly isolated single smooth muscle cells of the rabbit jejunum, J. Physiol. (London) 383: 461–476.Google Scholar
  6. Chesnoy-Marchais, D., 1982, A Cl- conductance activated by hyperpolarization in Aplysia neurones, Nature 299: 359–361.CrossRefGoogle Scholar
  7. Chesnoy-Marchais, D., 1983, Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurones, J. Physiol. (London) 342: 277–308.Google Scholar
  8. Chesnoy-Marchais, D., and Evans, M. G., 1986a, Chloride channels activated by hyperpolarization in Aplysia neurones, Pfluegers Arch. 407: 694–696.CrossRefGoogle Scholar
  9. Chesnoy-Marchais, D., and Evans, M. G., 1986b, Non-selective ionic channels in Aplysia neurons, J. Membr. Biol. 93: 75–83.PubMedCrossRefGoogle Scholar
  10. Coleman, H. A., 1986, Chloride currents in Chara. A patch-clamp study, J. Membr. Biol. 93: 55–61.CrossRefGoogle Scholar
  11. Coleman, H. A., and Findlay, G. P., 1985, Ion channels in the membrane of Chara inflata, J. Membr. Biol. 83: 109–118.CrossRefGoogle Scholar
  12. Constanti, A., and Galvan, M., 1983, Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones, J. Physiol. (London) 385: 153–178.Google Scholar
  13. DiFrancesco, D., 1985, The cardiac hyperpolarizing-activated current, it. Origins and developments, Prog. Biophys. Mol. Biol. 46: 163–183.PubMedCrossRefGoogle Scholar
  14. DiFrancesco, D., 1986, Characterization of single pacemaker channels in cardiac lino-atrial node cells, Nature 324: 470–473.PubMedCrossRefGoogle Scholar
  15. Geletyuk, V. I., and Kazachenko, V. N., 1985, Single CI- channels in molluscan neurons: Multiplicity of the conductance states, J. Membr. Biol. 86: 9–15.PubMedCrossRefGoogle Scholar
  16. Gögelein, H., Schlatter, E., and Greger, R., 1987, The “small” conductance chloride channel in the lumina) membrane of the rectal gland of the dogfish (Squalus acanthias), Pfluegers Arch. 409: 122–125.CrossRefGoogle Scholar
  17. Greger, R., Schlatter, E., and Gögelein, H., 1987, Chloride channels in the lumina] membrane of the rectal gland of the dogfish (Squalus acanthias). Properties of the “larger” conductance channel, Pfluegers Arch. 409: 114–121.CrossRefGoogle Scholar
  18. Hagiwara, S., Miyazaki, S., and Rosenthal, N. P., 1976, Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish, J. Gen. Physiol. 67: 621–638.PubMedCrossRefGoogle Scholar
  19. Halliwell, J. V., and Adams, P. R., 1982, Voltage-clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250: 71–92.PubMedCrossRefGoogle Scholar
  20. Hestrin, S., 1981, The interaction of potassium with the activation of anomalous rectification in frog muscle membrane, J. Physiol. (London) 317: 497–508.Google Scholar
  21. Kurachi, Y., 1985, Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea pig heart, J. Physiol. (London) 366: 365–385.Google Scholar
  22. Leech, C. A., and Stanfield, P. R., 1981, Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium, J. Physiol. (London) 319: 295–309.Google Scholar
  23. Madison, D. V., Malenka, R. C., and Nicoll, R. A., 1986, Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells, Nature 321: 695–697.PubMedCrossRefGoogle Scholar
  24. Mayer, M. L., and Westbrook, G. L., 1983, A voltage clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones, J. Physiol. (London) 340: 19–43.Google Scholar
  25. Miller, C., 1982, Open-state substructure of single chloride channels from Torpedo electroplax, Philos. Trans. R. Soc. London Ser. B 299: 401–411.CrossRefGoogle Scholar
  26. Miller, C., and White, M. M., 1984, Dimeric structure of single chloride channels from Torpedo electroplax, Proc. Natl. Acad. Sci. USA 81: 2772–2775.PubMedCrossRefGoogle Scholar
  27. Nowak, L., Ascher, P., and Berwald-Netter, Y., 1987, Ionic channels in mouse astrocytes in culture, J. Neurosci. 7: 101–109.PubMedGoogle Scholar
  28. Ozeki, M., Freeman, A. R., and Grundfest, H., 1966, The membrane components of crustacean neuromuscular systems, J. Gen. Physiol. 49: 1335–1349.PubMedCrossRefGoogle Scholar
  29. Peres, A., and Bernardini, G., 1983, A hyperpolarization-activated chloride current in Xenopus laevis oocytes under voltage-clamp, Pfluegers Arch. 399: 157–159.CrossRefGoogle Scholar
  30. Reuben, J. P., Girardier, L., and Grundfest, H., 1962, The chloride permeability of crayfish muscle fibers, Biol. Bull. 123: 509–510.Google Scholar
  31. Sakmann, B., and Trube, G., 1984, Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart, J. Physiol. (London) 347: 641–657.Google Scholar
  32. Selyanko, A. A., 1984, Cd2+ suppresses a time-dependent Cl— current in rat sympathetic neurone, J. Physiol. (London) 350: 49.Google Scholar
  33. Shoemaker, R. L., Frizzell, R. A., Dwyer, T. M., and Farley, J. M., 1986, Single chloride channel currents from canine tracheal epithelial cells, Biochim. Biophys. Acta 858: 235–242.PubMedCrossRefGoogle Scholar
  34. Taglietti, V., Tanzi, F., Romero, R., and Simoncini, L., 1984, Maturation involves suppression of voltage-gated currents in the frog oocyte, J. Cell. Physiol. 121: 576–588.PubMedCrossRefGoogle Scholar
  35. Tyerman, S. D., Findlay, G. P., and Paterson, G. J., 1986, Inward membrane current in Chara inflata. 1. A voltage and time-dependent Cl — component, J. Membr. Biol. 89: 139–152.CrossRefGoogle Scholar
  36. Warner, A. E., 1972, Kinetic properties of the chloride conductance of frog muscle, J. Physiol. (London) 227: 291–312.Google Scholar
  37. Yamamoto, D., and Suzuki, N., 1987, Blockage of chloride channels by HEPES buffer, Proc. R. Soc. London Ser. B 230: 93–100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Dominique Chesnoy-Marchais
    • 1
  1. 1.Laboratory of NeurobiologyÉcole Normale SuperieureParisFrance

Personalised recommendations