Acetylcholine-Activated Cl Channels in Molluscan Nerve Cells

  • Vladimir N. Kazachenko


Although the acetylcholine receptor (AChR) coupled to the cationic channel has received the most attention (see, e.g., Adams, 1981; Popot and Changeux, 1984; Hucho, 1986; Skok et al.,1987), it is nevertheless true that in many animals there exist AChR coupled to Cl channels, which seem to play a significant role in both synaptic transduction of signals and humoral regulation. Nicotinic AChR coupled to Cl channels are abundant in neuronal membranes of various molluscs, e.g., Helix (Kerkurt and Thomas, 1964), Cryptophallus (Chiarandini and Gerschenfeld, 1967; Chiarandini et al., 1967), Onchidium (Sawada, 1969), Aplysia (Frank and Tauc, 1964; Kehoe, 1967, 1972; Sato et al., 1968; Blankenship et al., 1971), Navanax (Levitan et al., 1970; Levitan and Tauc, 1972), Lymnaea stagnalis (Kislov, 1974; Kislov and Kazachenko, 1974), Planorbarius corneus (Ger et al., 1980), and others (see Gerschenfeld, 1973).


Membrane Potential Acetylcholine Receptor Noise Power Spectrum Apparent Dissociation Constant Helix Aspersa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. J., Gage, P. W., and Hamill, O. P., 1976, Voltage sensitivity of inhibitory postsynaptic currents in Aplysia buccal ganglia, Brain Res. 115: 506–511.PubMedCrossRefGoogle Scholar
  2. Adams, P. R., 1975, Kinetics of agonist conductance changes during hyperpolarization at frog end-plates, Br. J. Pharmacol. 53: 308–310.PubMedCrossRefGoogle Scholar
  3. Adams, P. R., 1981, Acetylcholine receptor kinetics, J. Membr. Biol. 58: 161–174.PubMedCrossRefGoogle Scholar
  4. Adams, P. R., and Sakmann, B., 1978, A comparison of current-voltage relations for full and partial agonists, J. Physiol. (London) 283: 621–644.Google Scholar
  5. Ahmed, Z., and Connor, J. A., 1979, Measurements of calcium influx under voltage clamp in molluscan neurones using the metallochrome dye Arsenazo 111, J. Physiol. (London) 286: 61–82.Google Scholar
  6. Akopyan, A. R., Chemeris, N. K., Iljin, V.I., and Veprintsev, B. N., 1980, Serotonin, dopamine and intracellular cyclic AMP inhibit the responses of nicotinic cholinergic membrane in snail neurons, Brain Res. 201: 480–484.PubMedCrossRefGoogle Scholar
  7. Alvarez-Leefmans, F. J., Rink, T. J., and Tsien, R. Y., 1981, Free calcium ions in neurones of Helix aspersa measured with ion-selective microelectrodes, J. Physiol. (London) 315: 531–548.Google Scholar
  8. Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced endplate current fluctuation at frog neuromuscular junction, J. Physiol. (London) 235: 655–691.Google Scholar
  9. Andreev, A. A., Veprintsev, B. N., and Vulfius, C. A., 1984, Two component desensitization of nicotinic receptor induced by acetylcholine agonist in Lymnaea stagnalis neurones, J. Physiol. (London) 353: 375–391.Google Scholar
  10. Andreev, A. A., Vulfius, C. A., Budantsev, A. Y., Kondrashova, M. N., and Grishina, E. V., 1986, Depression of neuron responses to acetylcholine by combined application of norepinephrine and substrates of the tricarboxylic acid cycle, Cell. Mol. Neurobiol. 6: 407–420.PubMedCrossRefGoogle Scholar
  11. Ascher, P., and Erulkar, S., 1983, Cholinergic chloride channels in snail neurons, In: Single-Channel Recording ( E. Neher and B. Sakmann, eds.), Plenum Press, New York, pp. 401–407.CrossRefGoogle Scholar
  12. Ascher, P., Marty, A., and Neild, T.O., 1978, Life time and elementary conductance of the channels mediating the excitatory effects of acetylcholine in Aplysia neurones, J. Physiol. (London) 278: 177–206.Google Scholar
  13. Ascher, P., Large, W. A., and Rang, H., 1979, Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells, J. Physiol. (London) 295: 139–170.Google Scholar
  14. Blankenship, J. E., Watchel, H., and Kandel, E. R., 1971, Ionic mechanisms of excitatory, inhibitory and dual synaptic actions mediated by an identified interneuron in the abdominal ganglion of Aplysia, J. Neurophysiol. 34: 76–92.PubMedGoogle Scholar
  15. Bormann, J., Hamill, O. P., and Sakmann, B., 1987, Mechanism of anion permeation through channels activated by glycine and -y-aminobutyric acid in mouse cultured spinal neurones, J. Physiol. (London) 385: 243–286.Google Scholar
  16. Bregestovski, P. D., 1980, Noise analysis in Lymnaea nerve cells, In: Physiology and Biochemistry of Transmitter Processes, Nauka, Moscow, p. 30 (Abstract).Google Scholar
  17. Bregestovski, P. D., and Iljin, V. I., 1980, Effect of calcium antagonist D-600 on the postsynaptic membrane, J. Physiol. (Paris) 76: 515–522.Google Scholar
  18. Bregestovski, P. D., and Redkozubov, A. E., 1986, Acetylcholine activated single chloride channels in Lymnaea stagnalis neurons, Biol. Membr. 3: 960–968 (Abstract).Google Scholar
  19. Bregestovski, P. D., Iljin, V. I., Jurchenko, O. P., Veprintsev, B. N., and Vulfius, C. A., 1977, Acetylcholine receptor conformational transition on excitation masks disulphide bonds against reduction, Nature 270: 71–73.PubMedCrossRefGoogle Scholar
  20. Brown, A. M., Akike, N., Tsuda, Y., and Morimoto, K., 1980, Ion migration and inactivation in calcium channel, J. Physiol. (Paris) 76: 395–402.Google Scholar
  21. Chang, H. W., and Neumann, E., 1976, Dynamic properties of isolated acetylcholine receptor proteins: Release of calcium ions caused by acetylcholine binding, Proc. Natl. Acad. Sci. USA 73: 3364–3368.PubMedCrossRefGoogle Scholar
  22. Chemeris, N. K., and Iljin, V. I., 1985, Intracellular regulation of ionic currents through chemoexcitable neurone membrane, Proceedings of the 16th FEBS Congress, Part B, VNU Science Press, pp. 373–378.Google Scholar
  23. Chemeris, N. K., Kazachenko, V. N., Kislov, A. N., and Kurchikov, A. L., 1982, Inhibition of acetylcholine responses by intracellular calcium in Lymnaea stagnalis neurones, J. Physiol. (London) 323: 1–19.Google Scholar
  24. Chemeris, N. K., Iljin, V. I., and Kazachenko, V. N., 1989, The dependences of the Ca2+-induced AChreceptor inactivation on the concentrations of ACh and Ca2+, Biofizika in press.Google Scholar
  25. Chiarandini, D. J., and Gerschenfeld, H. M., 1967, Ionic mechanism of cholinergic inhibition in molluscan neurons, Science 156: 1595–1596.PubMedCrossRefGoogle Scholar
  26. Chiarandini, D. J., Stefani, E., and Gerschenfeld, H. M., 1967, Ionic mechanism of cholinergic excitation in molluscan neurons, Science 156: 1597–1599.PubMedCrossRefGoogle Scholar
  27. Colquhoun, D., and Sakmann, B., 1983, Bursts of openings in transmitter-activated ion channels, In: Single-Channel Recording ( E. Neher and B. Sakmann, eds.), Plenum Press, New York, pp. 345–364.CrossRefGoogle Scholar
  28. Colquhoun, D., and Sakmann, B., 1985, Fast events in single channel currents activated by acetylcholine and its analogues at the frog muscle end-plate, J. Physiol. (London) 369: 501–557.Google Scholar
  29. Colquhoun, D., Dionne, V. E., Steinbach, J. H., and Stevens, C. F., 1975, Conductance of channels opened by acetylcholine-like drugs in muscle end-plate, Nature 253: 204–206.PubMedCrossRefGoogle Scholar
  30. Cull-Candy, S. G., and Usowicz, M. M., 1987, Multiple conductance channels activated by excitatory amino acids in cerebellar neurones, Nature 325: 525–528.PubMedCrossRefGoogle Scholar
  31. Derkach, V. A., 1986, Relaxations of acetylcholine-induced current in the neurons of sympathetic ganglion, Dokl. Akad. Nauk Ukr. SSR Ser. B 4: 60–62.Google Scholar
  32. Dionne, V. E., and Stevens, C. F., 1975, Voltage dependence of agonist effectiveness of the frog neuromuscular junction: Resolution of a paradox, J. Physiol. (London) 251: 245–270.Google Scholar
  33. DiPolo, R., Requena, J., Brinley, F. J., Jr., Mullins, L. J., Scarpa, A., and Tiffert, T., 1976, Ionized calcium concentrations in squid axons, J. Gen. Physiol. 67: 433–467.PubMedCrossRefGoogle Scholar
  34. Dreyer, F., and Peper, K., 1975, Density and dose-response curve of acetylcholine receptors in frog neuromuscular junction, Nature (London) 253: 641–643.CrossRefGoogle Scholar
  35. Eckert, R., Tillotson, D., and Ridgway, E. B., 1977, Voltage dependent facilitation of Ca2+ entry in voltage-clamp aequorin injected molluscan neurons, Proc. National. Acad. Sci. USA 74: 1748–1752.CrossRefGoogle Scholar
  36. Finkel, A. S., 1983, A cholinergic chloride conductance in neurones of Helix aspersa, J. Physiol. (London) 344: 119–135.Google Scholar
  37. Fox, J. A., 1987, Ion channel subconductance states, J. Membr. Biol. 97: 1–8.PubMedCrossRefGoogle Scholar
  38. Frank, K., and Tauc, L., 1964, Voltage clamp studies on molluscan neurone membrane properties, In: Cell Functions of Membrane Transport ( J. E. Hoffman, ed.), Prentice-Hall, Englewood Cliffs, N.J., pp. 113–135.Google Scholar
  39. Gage, P. W., and Armstrong, C. M., 1968, Miniature end-plate currents in voltage-clamped muscle fibers, Nature 218: 363–365.PubMedCrossRefGoogle Scholar
  40. Gage, P. W., and McBumey, R. N., 1975, Effects of membrane potential, temperature and neostigmine on the conductance changes caused by a quantum of acetylcholine at the toad neuromuscular junction, J. Physiol. (London) 244: 385–407.Google Scholar
  41. Gardner, D., 1980, Membrane-potential effects on an inhibitory postsynaptic conductance in Aplysia buccal ganglia, J. Physiol. (London) 304: 165–180.Google Scholar
  42. Gardner, D., and Stevens, C. F., 1980, Rate-limiting step of inhibitory postsynaptic current decay in Aplysia buccal ganglia, J. Physiol. (London) 304: 145–164.Google Scholar
  43. Geletyuk, V. L, and Kazachenko, V. N., 1983, Single potassium-dependent Cl− channel in molluscan neurons: Multiplicity of the conductance substates, Dokl Akad. Nauk SSSR 268: 1245–1247.Google Scholar
  44. Geletyuk, V. I., and Kazachenko, V. N., 1985, Single Cl− channels in molluscan neurons: Multiplicity of the conductance states, J. Membr. Biol. 86: 9–15.PubMedCrossRefGoogle Scholar
  45. Geletyuk, V. I., and Kazachenko, V. N., 1987, Synchronization of potassium channel activity of mollusc neurons induced by ferricyanide and barium, Biofizika 32: 73–77.Google Scholar
  46. Ger, B. A., Zeimal, E. V., and Kachman, A. H., 1980, Ionic mechanisms of fast (nicotinic) phase of acetylcholine-induced response in identified Planobarius corneus neurons, Neurofiziologia 12: 533–540.Google Scholar
  47. Gerschenfeld, H. M., 1973, Chemical transmission in invertebrate central nervous systems and neuromuscular junctions, Physiol. Rev. 53: 1–119.PubMedGoogle Scholar
  48. Gorman, A. L. F., and Thomas, M. V., 1978, Changes in intracellular concentration of free calcium ions in a pace-maker neurone measured with the metallochromic indicator dye Arsenazo III, J. Physiol. (London) 275: 357–376.Google Scholar
  49. Gorman, A. L. F., and Thomas, M. V., 1980, Intracellular calcium accumulation during depolarization in molluscan neurone, J. Physiol. (London) 308: 259–285.Google Scholar
  50. Hagiwara, S., and Nakajima, S., 1966, Differences in Na+ and Ca2 spikes as examined by application of tetrodotoxin, procain and manganese ions, J. Gen. Physiol. 49: 793–806.PubMedCrossRefGoogle Scholar
  51. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.CrossRefGoogle Scholar
  52. Hucho, F., 1986, The nicotinic acetylcholine receptor and its ion channel, Eur. J. Biochem. 158: 211–226.PubMedCrossRefGoogle Scholar
  53. Hughes, D., McBurney, R. N., Smith, S. M., and Zorec, R., 1987, Caesium ions activate chloride channels in rat cultured spinal cord neurones, J. Physiol. (London) 392: 231–251.Google Scholar
  54. Iljin, V. I., Bregestovski, P. D., and Vulfius, E. A., 1976, Influence of pH on the properties of cholinoreceptive membrane in Lymnaea neurones, Neurofiziologia 8: 640–643.Google Scholar
  55. Ivanova, T. T., Iljin, V. I., Iljasov, F. E., and Veprintsev, B. N., 1986, Average characteristics of neuronal membrane chloride channels activated by different n-cholinomimetics, Dokl. Akad. Nauk SSSR 290: 1264–1267.PubMedGoogle Scholar
  56. Ivanova, T. T., Iljin, V. I., Iljasov, F. E., Chemeris, N. K., and Veprintsev, B. N., 1987, Microscopic characteristics of modulation of cholinoreceptive membrane functions by intracellular Caz+ in molluscan neurons, Biofizika 32: 295–299 (Abstract).Google Scholar
  57. Jachr, C. F., and Stevens, C. F., 1987, Glutamate activates multiple single channel conductances in hippocampal neurones, Nature 325: 522–525.CrossRefGoogle Scholar
  58. Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (London) 224: 665–699.Google Scholar
  59. Kazachenko, V. N., 1979, Inactivation of cholinoreceptors caused by intracellular calcium, Postgraduate paper, Pushchino (Abstract).Google Scholar
  60. Kazachenko, V. N., and Geletyuk, V. I., 1984, The potential-dependent K+ channel in molluscan neurons is organized in a cluster of elementary channels, Biochim. Biophys. Acta 733: 132–142.Google Scholar
  61. Kazachenko, V. N., and Kislov, A. N., 1973, Voltage-current relations of the cholinoreceptive membrane of Lymnaea stagnalis neurons, VINITI 5421 (Abstract).Google Scholar
  62. Kazachenko, V. N., and Kislov, A. N., 1974, Interrelation between electroexcitable and chemosensitive membranes, In: Biophysics of Living Cell, Volume 4, Part 2 (G. M. Frank, ed. ), Pushchino, pp. 45–49.Google Scholar
  63. Kazachenko, V. N., and Kislov, A. N., 1977, Influence of membrane potential on operation of cholinoreceptors, In: Biophysics of Complex Systems and Radiation Violations ( G. M. Frank, ed.), Nauka, Moscow, pp. 15–16.Google Scholar
  64. Kazachenko, V. N., Kislov, A. N., and Veprintsev, B. N., 1979, Cholinoreceptive membrane inactivation caused by depolarization of Lymnaea stagnalis neurons, Comp. Biochem. Physiol. 63C: 61–66.Google Scholar
  65. Kazachenko, V. N., Kislov, A. N., Kurchikov, A. L., and Chemeris, N. K., 1981a, Inactivation of cholinoreceptors caused by intracellular calcium in Lymnaea stagnalis neurons, Dokl. Akad. Nauk SSSR 257: 1255–1257 (Abstract).Google Scholar
  66. Kazachenko, V. N., Kislov, A. N., Kurchikov, A. L., and Chemeris, N. K., 198lb, Intracellular calcium initiates the receptor inactivation, Biofizika 26:1052–1056 (Abstract).Google Scholar
  67. Kehoe, J. S., 1967, Pharmacological characteristics and ionic bases of a two component post-synaptic inhibition, Nature 215: 1503–1505.PubMedCrossRefGoogle Scholar
  68. Kehoe, J. S., 1972, Ionic mechanisms of a two component cholinergic inhibition in Aplysia neurons, J. Physiol. (London) 225: 85–114.Google Scholar
  69. Kerkurt, G. A., and Thomas, R. C., 1964, The effect of anion injection and changes in the external and internal potassium chloride concentration on the reversal potentials of IPSP and acetylcholine, Comp. Biochem. Physiol. 11: 199–213.CrossRefGoogle Scholar
  70. Kislov, A. N., 1974, Studying of activation of the membrane chloride conductance by alkali metal ions in isolated giant molluscan neurons, Postgraduate paper, Pushchino (in Russian).Google Scholar
  71. Kislov, A. N., and Kazachenko, V. N., 1974, Ion currents through activated chemosensitive membrane, In: Biophysics of Living Cell, Volume 4 Part 2 ( G. M. Frank, ed. ), Pushchino, pp. 39–44.Google Scholar
  72. Kislov, A. N., and Kazachenko, V. N., 1975, Potassium activation of chloride conductance in the isolated snail neurons, Stud. Biophys. 48: 151–153.Google Scholar
  73. Kislov, A. N., and Kazachenko, V. N., 1977, Chemosensitive somatic membrane of neuron activated by alkali metal ions, In: Biophysics of Complex Systems and Radiation Violations (G. M. Frank, ed.), Kislov, A. N., and Kazachenko, V. N., pp. 14–15 ( Abstract).Google Scholar
  74. Kordas, M., 1969, The effect of membrane polarization on the time course of the end-plate current in frog sartorius muscle, J. Physiol. (London) 204: 493–502.Google Scholar
  75. Kordas, M., 1972a, An attempt at an analysis of the factors determining the time course of the endplate current. I. The effect of prostigmine and the ratio of Mg2+ to Ca2+, J. Physiol. (London) 224: 317–332.Google Scholar
  76. Kordas, M., 1972b, An attempt at an analysis of the factors determining the time course of the endplate current. II. Temperature, J. Physiol. (London) 224: 333–348.Google Scholar
  77. Kostenko, M. A., Geletyuk, V. I., and Veprintsev, B. N., 1974, Completely isolated neurones in the mollusc Lymnaea stagnalis. A new objective for nerve cell biology investigation, Comp. Biochem. Physiol. 49A: 89–100.CrossRefGoogle Scholar
  78. Kostyuk, P. G., 1980, Calcium ionic channels in electrically excitable membranes, Neurosciences 5: 945–959.CrossRefGoogle Scholar
  79. Krasts, I. V., 1978, The amplitude of the action potential and calcium ion gradient on the membrane of mollusc neurone, Comp. Biochem. Biophys. 60A: 195–197.Google Scholar
  80. Kretsinger, R. H., and Nelson, D. J., 1976, Calcium in biological systems, Coord. Chem. Rev. 18: 29–124.CrossRefGoogle Scholar
  81. Kurchikov, A. L., and Kazachenko, V. N., 1979, Two components of the current relaxations in chemoreceptive membrane of Lymnaea stagnalis neurons, VINITI, 429–79 (Abstract).Google Scholar
  82. Kurchikov, A. L., and Kazachenko, V. N., I984a, Influence of membrane hyperpolarization on cholinoreceptive membrane conductance, Biol. Membr. 1:289–293 (Abstract).Google Scholar
  83. Kurchikov, A. L., and Kazachenko, V. N., I984b, Kinetics of interaction of acetylcholine with the cholinoreceptors in molluscan neurons, Biol. Membr. 1:384–388 (Abstract).Google Scholar
  84. Kurchikov, A. L., Kazachenko, V. N., and Veprintsev, B. N., 1985, Interaction of mollusc cholinoreceptors with suberyldicholine and other agonists, Biol. Membr. 2: 525–533 (Abstract).Google Scholar
  85. Lester, H. A., Changeux, J.-P., and Sheridan, R. E., 1975, Conductance increases produced by bath application of cholinergic agonists to Electrophorus electricus electroplaques, J. Gen. Physiol. 675: 797–816.CrossRefGoogle Scholar
  86. Lester, H. A., Koblin, D. D., and Sheridan, R. E., 1978, Role of voltage-sensitive receptors to nicotinic transmission, Biophys. J. 21: 181–194.PubMedCrossRefGoogle Scholar
  87. Levitan, H., and Tauc, L., 1972, Acetylcholine receptor: Topographic distribution and pharmacological properties of two receptor types on a single molluscan neurone, J. Physiol. (London) 222: 537–558.Google Scholar
  88. Levitan, H., Tauc, L., and Segundo, J. P., 1970, Electrical transmission among neurones in the buccal ganglion of a mollusc, Navanax inermis, J. Gen. Physiol. 55: 484–496.CrossRefGoogle Scholar
  89. MacDermott, A. B., Connor, E. A., Dionne, V. E., and Parsons, R. L., 1980, Voltage clamp study of fast excitatory synaptic currents in bullfrog sympathetic ganglion cells, J. Gen. Physiol. 75: 39–60.PubMedCrossRefGoogle Scholar
  90. Magazanik, L. G., and Vyskocil, F., 1970, Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium, J. Physiol. (London) 210: 507518.Google Scholar
  91. Magleby, K. L., and Stevens, C. F., I 972a, The effect of voltage on the time course of end-plate currents, J. Physiol. (London) 223: 151–171.Google Scholar
  92. Magleby, K. L., and Stevens, C. F., 19726, A quantitative description of end-plate currents, J. Physiol. (London) 223: 173–197.Google Scholar
  93. Meech, R. W., 1974, The sensitivity of Helix aspersa neurones to injected clacium ions, J. Physiol. (London) 237: 259–277.Google Scholar
  94. Naruschevichus, E. V., Chemeris, N. K., Ponomarjov, V. N., and Akopjan, A. R., 1979, Study of the dependences of inward current on extracellular concentrations of calcium and strontium ions in isolated Lymnaea stagnalis neurons, Neurophyziologia 79: 362–366 (Abstract).Google Scholar
  95. Nastuk, W. L., and Parsons, R. L., 1970, Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle, J. Gen. Physiol. 56: 218–249.PubMedCrossRefGoogle Scholar
  96. Neher, E., and Sakmann, B., 1975, Voltage dependence of drug-induced conductance in frog neuromuscular junction, Proc. Natl. Acad. Sci. USA 72: 2140–2144.PubMedCrossRefGoogle Scholar
  97. Neher, E., and Sakmann, B., 1976, Single-channel currents recorded from membrane at denervated frog muscle fibres, Nature 260: 799–802.PubMedCrossRefGoogle Scholar
  98. Popot, J.-L., and Changeux, J.-P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64: 1162–1239.PubMedGoogle Scholar
  99. Rang, H. P., 1974, Acetylcholine receptor, Q. Rev. Biophys. 7: 283–399.PubMedCrossRefGoogle Scholar
  100. Rang, H. P., 1981, The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells, J. Physiol. (London) 311: 23–55.Google Scholar
  101. Rasmussen, H., and Goodman, D. B. P., 1977, Relationships between calcium and cyclic nucleotides in cell activation, Physiol. Rev. 57: 421–508.PubMedGoogle Scholar
  102. Rübmassen, H., Eldefrawi, A. T., Eldefrawi, M. E., and Hess, G., 1978, Characterization of the calcium-binding sites of the purified acetylcholine receptor and identification of the calcium-binding subunits, Biochemistry 17: 3818–3825.CrossRefGoogle Scholar
  103. Sato, M. G., Austin, H., Yai, H., and Marashi, J., 1968, The nicotinic permeability changes during acetylcholine-induced responses in Aplysia ganglion cells, J. Gen. Physiol. 51: 312–345.CrossRefGoogle Scholar
  104. Sawada, M., 1969, Ionic mechanisms of the activated subsynaptic membrane in Onchidium neurons, J. Physiol. Soc. Jpn. 31: 491–504.Google Scholar
  105. Selyanko, A. A., Skok, V. I., and Derkach, V. A., 1979, Potential dependence of excitatory postsynaptic current in the neurons of mammalian sympathetic ganglion, Dokl. Akad. Nauk SSSR 247: 1007–1009 (Abstract).Google Scholar
  106. Sheridan, R. E., and Lester, H. A., 1975, Relaxation measurements of the acetylcholine receptor, Proc. Natl. Acad. Sci. USA 72: 3496–3500.PubMedCrossRefGoogle Scholar
  107. Sheridan, R. E., and Lester, H. A., 1977, Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques. A study of neurally evoked postsynaptic currents and of voltage-jump relaxations, J. Gen. Physiol. 70: 187–219.PubMedGoogle Scholar
  108. Simon, S. M., and Llinâs, R. P., 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48: 485–498.PubMedCrossRefGoogle Scholar
  109. Simonneau, M., Tauc, L., and Baux, G., 1980, Quantal release of construction examined by current fluctuation analysis at an identified neuronal synapse of Aplysia, Proc. Natl. Acad. Sci. USA 77: 1661–1665.PubMedCrossRefGoogle Scholar
  110. Skok, V. I., Selyanko, A. A., and Derkach, V. A., 1987, Neuronal Cholinoreceptors, Nauka, Moscow (Abstract).Google Scholar
  111. Smith, S. J., and Zucker, R. S., 1980, Aequorin response facilitation and intracellular calcium concentration in molluscan neurones, J. Physiol. (London) 300: 167–196.Google Scholar
  112. Stinnakre, J., and Tauc, L., 1973, Calcium influx in active neurones detected by injected aequorine, Nature 242: 113–115.CrossRefGoogle Scholar
  113. Tauc, L., and Gerschenfeld, H. M., 1962, A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system, J. Neurophysiol. 25: 236–262.PubMedGoogle Scholar
  114. Thompson, S. H., 1977, Three pharmacologically distinct potassium channels in molluscan neurones, J. Physiol. (London) 265: 465–488.Google Scholar
  115. Vulfius, C. A., and Iljin, V. I., 1980, Investigation of acetylcholine receptors by the method of chemical modification, Gen. Pharmacol. 11: 19–25.PubMedCrossRefGoogle Scholar
  116. Vulfius, C. A., Yurchenko, O. P., Iljin, V. I., Bregestovski, P. D., and Veprintsev, B. N., 1979, Acetylcholine receptor of Lymnaea stagnalis neurones, In: The Cholinergie Synapse (S. Tucek, ed.,), Elsevier, Amsterdam, pp. 293–302.CrossRefGoogle Scholar
  117. Weber, M., Changeux, J.-P., 1974, Binding of Naja nigricollis [ 3 H1 a-toxin to membrane fragments from Electrophorus electricus and Torpedo electric organs. II. Effect of cholinergic agonsists and antagonists on the binding of the tritiated a-neurotoxin, Mol. Pharmacol. 10: 15–34.PubMedGoogle Scholar
  118. Zeimal, E. V., and Vulfius, E. A., 1968, The action of cholino-mimetics and cholinolytics on the gastropod neurons, In: Neurobiology of Invertebrates ( J. Salanki, ed.), Academiai Kiado, Budapest, pp. 255–265.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Vladimir N. Kazachenko
    • 1
  1. 1.Institute of Biological PhysicsUSSR Academy of SciencesPushchino, Moscow RegionUSSR

Personalised recommendations