Skip to main content

Acetylcholine-Activated Cl Channels in Molluscan Nerve Cells

  • Chapter

Abstract

Although the acetylcholine receptor (AChR) coupled to the cationic channel has received the most attention (see, e.g., Adams, 1981; Popot and Changeux, 1984; Hucho, 1986; Skok et al.,1987), it is nevertheless true that in many animals there exist AChR coupled to Cl channels, which seem to play a significant role in both synaptic transduction of signals and humoral regulation. Nicotinic AChR coupled to Cl channels are abundant in neuronal membranes of various molluscs, e.g., Helix (Kerkurt and Thomas, 1964), Cryptophallus (Chiarandini and Gerschenfeld, 1967; Chiarandini et al., 1967), Onchidium (Sawada, 1969), Aplysia (Frank and Tauc, 1964; Kehoe, 1967, 1972; Sato et al., 1968; Blankenship et al., 1971), Navanax (Levitan et al., 1970; Levitan and Tauc, 1972), Lymnaea stagnalis (Kislov, 1974; Kislov and Kazachenko, 1974), Planorbarius corneus (Ger et al., 1980), and others (see Gerschenfeld, 1973).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. J., Gage, P. W., and Hamill, O. P., 1976, Voltage sensitivity of inhibitory postsynaptic currents in Aplysia buccal ganglia, Brain Res. 115: 506–511.

    Article  PubMed  CAS  Google Scholar 

  • Adams, P. R., 1975, Kinetics of agonist conductance changes during hyperpolarization at frog end-plates, Br. J. Pharmacol. 53: 308–310.

    Article  PubMed  CAS  Google Scholar 

  • Adams, P. R., 1981, Acetylcholine receptor kinetics, J. Membr. Biol. 58: 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Adams, P. R., and Sakmann, B., 1978, A comparison of current-voltage relations for full and partial agonists, J. Physiol. (London) 283: 621–644.

    CAS  Google Scholar 

  • Ahmed, Z., and Connor, J. A., 1979, Measurements of calcium influx under voltage clamp in molluscan neurones using the metallochrome dye Arsenazo 111, J. Physiol. (London) 286: 61–82.

    CAS  Google Scholar 

  • Akopyan, A. R., Chemeris, N. K., Iljin, V.I., and Veprintsev, B. N., 1980, Serotonin, dopamine and intracellular cyclic AMP inhibit the responses of nicotinic cholinergic membrane in snail neurons, Brain Res. 201: 480–484.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Leefmans, F. J., Rink, T. J., and Tsien, R. Y., 1981, Free calcium ions in neurones of Helix aspersa measured with ion-selective microelectrodes, J. Physiol. (London) 315: 531–548.

    CAS  Google Scholar 

  • Anderson, C. R., and Stevens, C. F., 1973, Voltage clamp analysis of acetylcholine produced endplate current fluctuation at frog neuromuscular junction, J. Physiol. (London) 235: 655–691.

    CAS  Google Scholar 

  • Andreev, A. A., Veprintsev, B. N., and Vulfius, C. A., 1984, Two component desensitization of nicotinic receptor induced by acetylcholine agonist in Lymnaea stagnalis neurones, J. Physiol. (London) 353: 375–391.

    CAS  Google Scholar 

  • Andreev, A. A., Vulfius, C. A., Budantsev, A. Y., Kondrashova, M. N., and Grishina, E. V., 1986, Depression of neuron responses to acetylcholine by combined application of norepinephrine and substrates of the tricarboxylic acid cycle, Cell. Mol. Neurobiol. 6: 407–420.

    Article  PubMed  CAS  Google Scholar 

  • Ascher, P., and Erulkar, S., 1983, Cholinergic chloride channels in snail neurons, In: Single-Channel Recording ( E. Neher and B. Sakmann, eds.), Plenum Press, New York, pp. 401–407.

    Chapter  Google Scholar 

  • Ascher, P., Marty, A., and Neild, T.O., 1978, Life time and elementary conductance of the channels mediating the excitatory effects of acetylcholine in Aplysia neurones, J. Physiol. (London) 278: 177–206.

    CAS  Google Scholar 

  • Ascher, P., Large, W. A., and Rang, H., 1979, Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells, J. Physiol. (London) 295: 139–170.

    CAS  Google Scholar 

  • Blankenship, J. E., Watchel, H., and Kandel, E. R., 1971, Ionic mechanisms of excitatory, inhibitory and dual synaptic actions mediated by an identified interneuron in the abdominal ganglion of Aplysia, J. Neurophysiol. 34: 76–92.

    PubMed  CAS  Google Scholar 

  • Bormann, J., Hamill, O. P., and Sakmann, B., 1987, Mechanism of anion permeation through channels activated by glycine and -y-aminobutyric acid in mouse cultured spinal neurones, J. Physiol. (London) 385: 243–286.

    CAS  Google Scholar 

  • Bregestovski, P. D., 1980, Noise analysis in Lymnaea nerve cells, In: Physiology and Biochemistry of Transmitter Processes, Nauka, Moscow, p. 30 (Abstract).

    Google Scholar 

  • Bregestovski, P. D., and Iljin, V. I., 1980, Effect of calcium antagonist D-600 on the postsynaptic membrane, J. Physiol. (Paris) 76: 515–522.

    CAS  Google Scholar 

  • Bregestovski, P. D., and Redkozubov, A. E., 1986, Acetylcholine activated single chloride channels in Lymnaea stagnalis neurons, Biol. Membr. 3: 960–968 (Abstract).

    Google Scholar 

  • Bregestovski, P. D., Iljin, V. I., Jurchenko, O. P., Veprintsev, B. N., and Vulfius, C. A., 1977, Acetylcholine receptor conformational transition on excitation masks disulphide bonds against reduction, Nature 270: 71–73.

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. M., Akike, N., Tsuda, Y., and Morimoto, K., 1980, Ion migration and inactivation in calcium channel, J. Physiol. (Paris) 76: 395–402.

    CAS  Google Scholar 

  • Chang, H. W., and Neumann, E., 1976, Dynamic properties of isolated acetylcholine receptor proteins: Release of calcium ions caused by acetylcholine binding, Proc. Natl. Acad. Sci. USA 73: 3364–3368.

    Article  PubMed  CAS  Google Scholar 

  • Chemeris, N. K., and Iljin, V. I., 1985, Intracellular regulation of ionic currents through chemoexcitable neurone membrane, Proceedings of the 16th FEBS Congress, Part B, VNU Science Press, pp. 373–378.

    Google Scholar 

  • Chemeris, N. K., Kazachenko, V. N., Kislov, A. N., and Kurchikov, A. L., 1982, Inhibition of acetylcholine responses by intracellular calcium in Lymnaea stagnalis neurones, J. Physiol. (London) 323: 1–19.

    CAS  Google Scholar 

  • Chemeris, N. K., Iljin, V. I., and Kazachenko, V. N., 1989, The dependences of the Ca2+-induced AChreceptor inactivation on the concentrations of ACh and Ca2+, Biofizika in press.

    Google Scholar 

  • Chiarandini, D. J., and Gerschenfeld, H. M., 1967, Ionic mechanism of cholinergic inhibition in molluscan neurons, Science 156: 1595–1596.

    Article  PubMed  CAS  Google Scholar 

  • Chiarandini, D. J., Stefani, E., and Gerschenfeld, H. M., 1967, Ionic mechanism of cholinergic excitation in molluscan neurons, Science 156: 1597–1599.

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun, D., and Sakmann, B., 1983, Bursts of openings in transmitter-activated ion channels, In: Single-Channel Recording ( E. Neher and B. Sakmann, eds.), Plenum Press, New York, pp. 345–364.

    Chapter  Google Scholar 

  • Colquhoun, D., and Sakmann, B., 1985, Fast events in single channel currents activated by acetylcholine and its analogues at the frog muscle end-plate, J. Physiol. (London) 369: 501–557.

    CAS  Google Scholar 

  • Colquhoun, D., Dionne, V. E., Steinbach, J. H., and Stevens, C. F., 1975, Conductance of channels opened by acetylcholine-like drugs in muscle end-plate, Nature 253: 204–206.

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy, S. G., and Usowicz, M. M., 1987, Multiple conductance channels activated by excitatory amino acids in cerebellar neurones, Nature 325: 525–528.

    Article  PubMed  CAS  Google Scholar 

  • Derkach, V. A., 1986, Relaxations of acetylcholine-induced current in the neurons of sympathetic ganglion, Dokl. Akad. Nauk Ukr. SSR Ser. B 4: 60–62.

    Google Scholar 

  • Dionne, V. E., and Stevens, C. F., 1975, Voltage dependence of agonist effectiveness of the frog neuromuscular junction: Resolution of a paradox, J. Physiol. (London) 251: 245–270.

    CAS  Google Scholar 

  • DiPolo, R., Requena, J., Brinley, F. J., Jr., Mullins, L. J., Scarpa, A., and Tiffert, T., 1976, Ionized calcium concentrations in squid axons, J. Gen. Physiol. 67: 433–467.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, F., and Peper, K., 1975, Density and dose-response curve of acetylcholine receptors in frog neuromuscular junction, Nature (London) 253: 641–643.

    Article  CAS  Google Scholar 

  • Eckert, R., Tillotson, D., and Ridgway, E. B., 1977, Voltage dependent facilitation of Ca2+ entry in voltage-clamp aequorin injected molluscan neurons, Proc. National. Acad. Sci. USA 74: 1748–1752.

    Article  CAS  Google Scholar 

  • Finkel, A. S., 1983, A cholinergic chloride conductance in neurones of Helix aspersa, J. Physiol. (London) 344: 119–135.

    CAS  Google Scholar 

  • Fox, J. A., 1987, Ion channel subconductance states, J. Membr. Biol. 97: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Frank, K., and Tauc, L., 1964, Voltage clamp studies on molluscan neurone membrane properties, In: Cell Functions of Membrane Transport ( J. E. Hoffman, ed.), Prentice-Hall, Englewood Cliffs, N.J., pp. 113–135.

    Google Scholar 

  • Gage, P. W., and Armstrong, C. M., 1968, Miniature end-plate currents in voltage-clamped muscle fibers, Nature 218: 363–365.

    Article  PubMed  CAS  Google Scholar 

  • Gage, P. W., and McBumey, R. N., 1975, Effects of membrane potential, temperature and neostigmine on the conductance changes caused by a quantum of acetylcholine at the toad neuromuscular junction, J. Physiol. (London) 244: 385–407.

    CAS  Google Scholar 

  • Gardner, D., 1980, Membrane-potential effects on an inhibitory postsynaptic conductance in Aplysia buccal ganglia, J. Physiol. (London) 304: 165–180.

    CAS  Google Scholar 

  • Gardner, D., and Stevens, C. F., 1980, Rate-limiting step of inhibitory postsynaptic current decay in Aplysia buccal ganglia, J. Physiol. (London) 304: 145–164.

    CAS  Google Scholar 

  • Geletyuk, V. L, and Kazachenko, V. N., 1983, Single potassium-dependent Cl− channel in molluscan neurons: Multiplicity of the conductance substates, Dokl Akad. Nauk SSSR 268: 1245–1247.

    CAS  Google Scholar 

  • Geletyuk, V. I., and Kazachenko, V. N., 1985, Single Cl− channels in molluscan neurons: Multiplicity of the conductance states, J. Membr. Biol. 86: 9–15.

    Article  PubMed  CAS  Google Scholar 

  • Geletyuk, V. I., and Kazachenko, V. N., 1987, Synchronization of potassium channel activity of mollusc neurons induced by ferricyanide and barium, Biofizika 32: 73–77.

    CAS  Google Scholar 

  • Ger, B. A., Zeimal, E. V., and Kachman, A. H., 1980, Ionic mechanisms of fast (nicotinic) phase of acetylcholine-induced response in identified Planobarius corneus neurons, Neurofiziologia 12: 533–540.

    CAS  Google Scholar 

  • Gerschenfeld, H. M., 1973, Chemical transmission in invertebrate central nervous systems and neuromuscular junctions, Physiol. Rev. 53: 1–119.

    PubMed  CAS  Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1978, Changes in intracellular concentration of free calcium ions in a pace-maker neurone measured with the metallochromic indicator dye Arsenazo III, J. Physiol. (London) 275: 357–376.

    CAS  Google Scholar 

  • Gorman, A. L. F., and Thomas, M. V., 1980, Intracellular calcium accumulation during depolarization in molluscan neurone, J. Physiol. (London) 308: 259–285.

    CAS  Google Scholar 

  • Hagiwara, S., and Nakajima, S., 1966, Differences in Na+ and Ca2 spikes as examined by application of tetrodotoxin, procain and manganese ions, J. Gen. Physiol. 49: 793–806.

    Article  PubMed  CAS  Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfluegers Arch. 391: 85–100.

    Article  CAS  Google Scholar 

  • Hucho, F., 1986, The nicotinic acetylcholine receptor and its ion channel, Eur. J. Biochem. 158: 211–226.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, D., McBurney, R. N., Smith, S. M., and Zorec, R., 1987, Caesium ions activate chloride channels in rat cultured spinal cord neurones, J. Physiol. (London) 392: 231–251.

    CAS  Google Scholar 

  • Iljin, V. I., Bregestovski, P. D., and Vulfius, E. A., 1976, Influence of pH on the properties of cholinoreceptive membrane in Lymnaea neurones, Neurofiziologia 8: 640–643.

    Google Scholar 

  • Ivanova, T. T., Iljin, V. I., Iljasov, F. E., and Veprintsev, B. N., 1986, Average characteristics of neuronal membrane chloride channels activated by different n-cholinomimetics, Dokl. Akad. Nauk SSSR 290: 1264–1267.

    PubMed  CAS  Google Scholar 

  • Ivanova, T. T., Iljin, V. I., Iljasov, F. E., Chemeris, N. K., and Veprintsev, B. N., 1987, Microscopic characteristics of modulation of cholinoreceptive membrane functions by intracellular Caz+ in molluscan neurons, Biofizika 32: 295–299 (Abstract).

    CAS  Google Scholar 

  • Jachr, C. F., and Stevens, C. F., 1987, Glutamate activates multiple single channel conductances in hippocampal neurones, Nature 325: 522–525.

    Article  Google Scholar 

  • Katz, B., and Miledi, R., 1972, The statistical nature of the acetylcholine potential and its molecular components, J. Physiol. (London) 224: 665–699.

    CAS  Google Scholar 

  • Kazachenko, V. N., 1979, Inactivation of cholinoreceptors caused by intracellular calcium, Postgraduate paper, Pushchino (Abstract).

    Google Scholar 

  • Kazachenko, V. N., and Geletyuk, V. I., 1984, The potential-dependent K+ channel in molluscan neurons is organized in a cluster of elementary channels, Biochim. Biophys. Acta 733: 132–142.

    Google Scholar 

  • Kazachenko, V. N., and Kislov, A. N., 1973, Voltage-current relations of the cholinoreceptive membrane of Lymnaea stagnalis neurons, VINITI 5421 (Abstract).

    Google Scholar 

  • Kazachenko, V. N., and Kislov, A. N., 1974, Interrelation between electroexcitable and chemosensitive membranes, In: Biophysics of Living Cell, Volume 4, Part 2 (G. M. Frank, ed. ), Pushchino, pp. 45–49.

    Google Scholar 

  • Kazachenko, V. N., and Kislov, A. N., 1977, Influence of membrane potential on operation of cholinoreceptors, In: Biophysics of Complex Systems and Radiation Violations ( G. M. Frank, ed.), Nauka, Moscow, pp. 15–16.

    Google Scholar 

  • Kazachenko, V. N., Kislov, A. N., and Veprintsev, B. N., 1979, Cholinoreceptive membrane inactivation caused by depolarization of Lymnaea stagnalis neurons, Comp. Biochem. Physiol. 63C: 61–66.

    Google Scholar 

  • Kazachenko, V. N., Kislov, A. N., Kurchikov, A. L., and Chemeris, N. K., 1981a, Inactivation of cholinoreceptors caused by intracellular calcium in Lymnaea stagnalis neurons, Dokl. Akad. Nauk SSSR 257: 1255–1257 (Abstract).

    CAS  Google Scholar 

  • Kazachenko, V. N., Kislov, A. N., Kurchikov, A. L., and Chemeris, N. K., 198lb, Intracellular calcium initiates the receptor inactivation, Biofizika 26:1052–1056 (Abstract).

    Google Scholar 

  • Kehoe, J. S., 1967, Pharmacological characteristics and ionic bases of a two component post-synaptic inhibition, Nature 215: 1503–1505.

    Article  PubMed  CAS  Google Scholar 

  • Kehoe, J. S., 1972, Ionic mechanisms of a two component cholinergic inhibition in Aplysia neurons, J. Physiol. (London) 225: 85–114.

    CAS  Google Scholar 

  • Kerkurt, G. A., and Thomas, R. C., 1964, The effect of anion injection and changes in the external and internal potassium chloride concentration on the reversal potentials of IPSP and acetylcholine, Comp. Biochem. Physiol. 11: 199–213.

    Article  Google Scholar 

  • Kislov, A. N., 1974, Studying of activation of the membrane chloride conductance by alkali metal ions in isolated giant molluscan neurons, Postgraduate paper, Pushchino (in Russian).

    Google Scholar 

  • Kislov, A. N., and Kazachenko, V. N., 1974, Ion currents through activated chemosensitive membrane, In: Biophysics of Living Cell, Volume 4 Part 2 ( G. M. Frank, ed. ), Pushchino, pp. 39–44.

    Google Scholar 

  • Kislov, A. N., and Kazachenko, V. N., 1975, Potassium activation of chloride conductance in the isolated snail neurons, Stud. Biophys. 48: 151–153.

    CAS  Google Scholar 

  • Kislov, A. N., and Kazachenko, V. N., 1977, Chemosensitive somatic membrane of neuron activated by alkali metal ions, In: Biophysics of Complex Systems and Radiation Violations (G. M. Frank, ed.), Kislov, A. N., and Kazachenko, V. N., pp. 14–15 ( Abstract).

    Google Scholar 

  • Kordas, M., 1969, The effect of membrane polarization on the time course of the end-plate current in frog sartorius muscle, J. Physiol. (London) 204: 493–502.

    CAS  Google Scholar 

  • Kordas, M., 1972a, An attempt at an analysis of the factors determining the time course of the endplate current. I. The effect of prostigmine and the ratio of Mg2+ to Ca2+, J. Physiol. (London) 224: 317–332.

    CAS  Google Scholar 

  • Kordas, M., 1972b, An attempt at an analysis of the factors determining the time course of the endplate current. II. Temperature, J. Physiol. (London) 224: 333–348.

    CAS  Google Scholar 

  • Kostenko, M. A., Geletyuk, V. I., and Veprintsev, B. N., 1974, Completely isolated neurones in the mollusc Lymnaea stagnalis. A new objective for nerve cell biology investigation, Comp. Biochem. Physiol. 49A: 89–100.

    Article  CAS  Google Scholar 

  • Kostyuk, P. G., 1980, Calcium ionic channels in electrically excitable membranes, Neurosciences 5: 945–959.

    Article  CAS  Google Scholar 

  • Krasts, I. V., 1978, The amplitude of the action potential and calcium ion gradient on the membrane of mollusc neurone, Comp. Biochem. Biophys. 60A: 195–197.

    Google Scholar 

  • Kretsinger, R. H., and Nelson, D. J., 1976, Calcium in biological systems, Coord. Chem. Rev. 18: 29–124.

    Article  CAS  Google Scholar 

  • Kurchikov, A. L., and Kazachenko, V. N., 1979, Two components of the current relaxations in chemoreceptive membrane of Lymnaea stagnalis neurons, VINITI, 429–79 (Abstract).

    Google Scholar 

  • Kurchikov, A. L., and Kazachenko, V. N., I984a, Influence of membrane hyperpolarization on cholinoreceptive membrane conductance, Biol. Membr. 1:289–293 (Abstract).

    Google Scholar 

  • Kurchikov, A. L., and Kazachenko, V. N., I984b, Kinetics of interaction of acetylcholine with the cholinoreceptors in molluscan neurons, Biol. Membr. 1:384–388 (Abstract).

    Google Scholar 

  • Kurchikov, A. L., Kazachenko, V. N., and Veprintsev, B. N., 1985, Interaction of mollusc cholinoreceptors with suberyldicholine and other agonists, Biol. Membr. 2: 525–533 (Abstract).

    CAS  Google Scholar 

  • Lester, H. A., Changeux, J.-P., and Sheridan, R. E., 1975, Conductance increases produced by bath application of cholinergic agonists to Electrophorus electricus electroplaques, J. Gen. Physiol. 675: 797–816.

    Article  Google Scholar 

  • Lester, H. A., Koblin, D. D., and Sheridan, R. E., 1978, Role of voltage-sensitive receptors to nicotinic transmission, Biophys. J. 21: 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Levitan, H., and Tauc, L., 1972, Acetylcholine receptor: Topographic distribution and pharmacological properties of two receptor types on a single molluscan neurone, J. Physiol. (London) 222: 537–558.

    CAS  Google Scholar 

  • Levitan, H., Tauc, L., and Segundo, J. P., 1970, Electrical transmission among neurones in the buccal ganglion of a mollusc, Navanax inermis, J. Gen. Physiol. 55: 484–496.

    Article  CAS  Google Scholar 

  • MacDermott, A. B., Connor, E. A., Dionne, V. E., and Parsons, R. L., 1980, Voltage clamp study of fast excitatory synaptic currents in bullfrog sympathetic ganglion cells, J. Gen. Physiol. 75: 39–60.

    Article  PubMed  CAS  Google Scholar 

  • Magazanik, L. G., and Vyskocil, F., 1970, Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium, J. Physiol. (London) 210: 507518.

    Google Scholar 

  • Magleby, K. L., and Stevens, C. F., I 972a, The effect of voltage on the time course of end-plate currents, J. Physiol. (London) 223: 151–171.

    Google Scholar 

  • Magleby, K. L., and Stevens, C. F., 19726, A quantitative description of end-plate currents, J. Physiol. (London) 223: 173–197.

    Google Scholar 

  • Meech, R. W., 1974, The sensitivity of Helix aspersa neurones to injected clacium ions, J. Physiol. (London) 237: 259–277.

    CAS  Google Scholar 

  • Naruschevichus, E. V., Chemeris, N. K., Ponomarjov, V. N., and Akopjan, A. R., 1979, Study of the dependences of inward current on extracellular concentrations of calcium and strontium ions in isolated Lymnaea stagnalis neurons, Neurophyziologia 79: 362–366 (Abstract).

    Google Scholar 

  • Nastuk, W. L., and Parsons, R. L., 1970, Factors in the inactivation of postjunctional membrane receptors of frog skeletal muscle, J. Gen. Physiol. 56: 218–249.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., and Sakmann, B., 1975, Voltage dependence of drug-induced conductance in frog neuromuscular junction, Proc. Natl. Acad. Sci. USA 72: 2140–2144.

    Article  PubMed  CAS  Google Scholar 

  • Neher, E., and Sakmann, B., 1976, Single-channel currents recorded from membrane at denervated frog muscle fibres, Nature 260: 799–802.

    Article  PubMed  CAS  Google Scholar 

  • Popot, J.-L., and Changeux, J.-P., 1984, Nicotinic receptor of acetylcholine: Structure of an oligomeric integral membrane protein, Physiol. Rev. 64: 1162–1239.

    PubMed  CAS  Google Scholar 

  • Rang, H. P., 1974, Acetylcholine receptor, Q. Rev. Biophys. 7: 283–399.

    Article  PubMed  CAS  Google Scholar 

  • Rang, H. P., 1981, The characteristics of synaptic currents and responses to acetylcholine of rat submandibular ganglion cells, J. Physiol. (London) 311: 23–55.

    CAS  Google Scholar 

  • Rasmussen, H., and Goodman, D. B. P., 1977, Relationships between calcium and cyclic nucleotides in cell activation, Physiol. Rev. 57: 421–508.

    PubMed  CAS  Google Scholar 

  • Rübmassen, H., Eldefrawi, A. T., Eldefrawi, M. E., and Hess, G., 1978, Characterization of the calcium-binding sites of the purified acetylcholine receptor and identification of the calcium-binding subunits, Biochemistry 17: 3818–3825.

    Article  Google Scholar 

  • Sato, M. G., Austin, H., Yai, H., and Marashi, J., 1968, The nicotinic permeability changes during acetylcholine-induced responses in Aplysia ganglion cells, J. Gen. Physiol. 51: 312–345.

    Article  Google Scholar 

  • Sawada, M., 1969, Ionic mechanisms of the activated subsynaptic membrane in Onchidium neurons, J. Physiol. Soc. Jpn. 31: 491–504.

    CAS  Google Scholar 

  • Selyanko, A. A., Skok, V. I., and Derkach, V. A., 1979, Potential dependence of excitatory postsynaptic current in the neurons of mammalian sympathetic ganglion, Dokl. Akad. Nauk SSSR 247: 1007–1009 (Abstract).

    Google Scholar 

  • Sheridan, R. E., and Lester, H. A., 1975, Relaxation measurements of the acetylcholine receptor, Proc. Natl. Acad. Sci. USA 72: 3496–3500.

    Article  PubMed  CAS  Google Scholar 

  • Sheridan, R. E., and Lester, H. A., 1977, Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques. A study of neurally evoked postsynaptic currents and of voltage-jump relaxations, J. Gen. Physiol. 70: 187–219.

    PubMed  CAS  Google Scholar 

  • Simon, S. M., and Llinâs, R. P., 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J. 48: 485–498.

    Article  PubMed  CAS  Google Scholar 

  • Simonneau, M., Tauc, L., and Baux, G., 1980, Quantal release of construction examined by current fluctuation analysis at an identified neuronal synapse of Aplysia, Proc. Natl. Acad. Sci. USA 77: 1661–1665.

    Article  PubMed  CAS  Google Scholar 

  • Skok, V. I., Selyanko, A. A., and Derkach, V. A., 1987, Neuronal Cholinoreceptors, Nauka, Moscow (Abstract).

    Google Scholar 

  • Smith, S. J., and Zucker, R. S., 1980, Aequorin response facilitation and intracellular calcium concentration in molluscan neurones, J. Physiol. (London) 300: 167–196.

    CAS  Google Scholar 

  • Stinnakre, J., and Tauc, L., 1973, Calcium influx in active neurones detected by injected aequorine, Nature 242: 113–115.

    Article  CAS  Google Scholar 

  • Tauc, L., and Gerschenfeld, H. M., 1962, A cholinergic mechanism of inhibitory synaptic transmission in a molluscan nervous system, J. Neurophysiol. 25: 236–262.

    PubMed  CAS  Google Scholar 

  • Thompson, S. H., 1977, Three pharmacologically distinct potassium channels in molluscan neurones, J. Physiol. (London) 265: 465–488.

    CAS  Google Scholar 

  • Vulfius, C. A., and Iljin, V. I., 1980, Investigation of acetylcholine receptors by the method of chemical modification, Gen. Pharmacol. 11: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Vulfius, C. A., Yurchenko, O. P., Iljin, V. I., Bregestovski, P. D., and Veprintsev, B. N., 1979, Acetylcholine receptor of Lymnaea stagnalis neurones, In: The Cholinergie Synapse (S. Tucek, ed.,), Elsevier, Amsterdam, pp. 293–302.

    Chapter  Google Scholar 

  • Weber, M., Changeux, J.-P., 1974, Binding of Naja nigricollis [ 3 H1 a-toxin to membrane fragments from Electrophorus electricus and Torpedo electric organs. II. Effect of cholinergic agonsists and antagonists on the binding of the tritiated a-neurotoxin, Mol. Pharmacol. 10: 15–34.

    PubMed  CAS  Google Scholar 

  • Zeimal, E. V., and Vulfius, E. A., 1968, The action of cholino-mimetics and cholinolytics on the gastropod neurons, In: Neurobiology of Invertebrates ( J. Salanki, ed.), Academiai Kiado, Budapest, pp. 255–265.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kazachenko, V.N. (1990). Acetylcholine-Activated Cl Channels in Molluscan Nerve Cells. In: Alvarez-Leefmans, F.J., Russell, J.M. (eds) Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9685-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9685-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9687-2

  • Online ISBN: 978-1-4757-9685-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics