Methods for Measuring Chloride Transport across Nerve, Muscle, and Glial Cells

  • Francisco J. Alvarez-Leefmans
  • Fernando Giraldez
  • John M. Russell

Abstract

Intracellular Cl together with HCO 3 is the most abundant free anion in living cells. Measuring intracellular chloride activity (a Cl i ) and studying the mechanisms involved in regulation of intracellular Cl is particularly important in excitable cells for four main reasons: (1) a Cl i is a quantity needed to determine E Cl, the Cl equilibrium potential. (2) Several transport mechanisms responsible for intracellular pH regulation are tightly coupled to Cl. (3) Cl is also involved in transport mechanisms implicated in cell volume regulation. (4) Knowledge of intracellular Cl homeostasis is crucial for understanding synaptic inhibition.

Keywords

Dorsal Root Ganglion Neuron Liquid Membrane Selectivity Coefficient Membrane Electrode Filling Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, H., Pietruschka, F., and Zierold, K., 1985, Comparative measurements of potassium and chloride with ion-sensitive microelectrodes and x-ray microanalysis in cultured skeletal muscle fibers, In Vitro Cell Dev. Biol. 21: 45–48.PubMedCrossRefGoogle Scholar
  2. Aickin, C. C., and Brading, A. F., 1982, Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36 chloride efflux and microelectrodes, J. Physiol. (London) 326: 139–154.Google Scholar
  3. Aickin, C. C., and Brading, A. F., 1984, The role of chloride bicarbonate exchange in the regulation of intracellular chloride in guinea-pig vas deferens, J. Physiol. (London) 349: 587–606.Google Scholar
  4. Aickin, C. C., and Brading, A. F., 1985a, The effects of bicarbonate and foreign anions on chloride transport in smooth muscle of the guinea-pig vas deferens, J. Physiol. (London) 366: 267–280.Google Scholar
  5. Aickin, C. C., and Brading, A. F., 1985b, Advances in the understanding of transmembrane ionic gradients and permeabilities in smooth muscle obtained by using ion-selective micro-electrodes, Experientia 41: 879–887.PubMedCrossRefGoogle Scholar
  6. Aickin, C. C., Betz, W. J., and Harris, G. L., 1989. Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle, J. Physiol. (London) 411: 437–455.Google Scholar
  7. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1989, Molecular Biology of the Cell, 2nd ed., Garland, New York.Google Scholar
  8. Allakhverdov, B. L., Burovina, I. V., Chmykhova, N. M., and Shapovalov, A. I., 1980, Electron probe x-ray microanalysis of intracellular sodium, potassium and chlorine contents in amphibian motoneurones, Neuroscience 5: 2023–2031.PubMedCrossRefGoogle Scholar
  9. Alvarez-Leefmans, F. J., Rink, T. J., and Tsien, R. Y., 1981, Free calcium ions in neurones of Helix asperse measured with ion-selective micro-electrodes, J. Physiol. (London) 315: 531–548.Google Scholar
  10. Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Gonzalez-Serratos, H., 1986, Intracellular free magnesium in frog skeletal muscle fibres measured with ion-selective micro-electrodes, J. Physiol. (London) 378: 461–483.Google Scholar
  11. Alvarez-Leefmans, F. J., Giraldez, F., and Camino, S. M., 1987, Intracellular free magnesium in excitable cells: Its measurement and its biological significance, Can. J. Physiol. Pharmacol. 65: 915–925.PubMedCrossRefGoogle Scholar
  12. Alvarez-Leefmans, F. J., Gamino, S. M., Giraldez, F., and Nogueron, L, 1988, Intracellular chloride regulation in amphibian dorsal root ganglion neurones studies with ion-selective micro-electrodes, J. Physiol. (London) 406: 225–246.Google Scholar
  13. Ammann, D., 1986, ion-Selective Microelectrodes, Springer-Verlag, Berlin.Google Scholar
  14. Ammann, D., Huser, M., Kräutler, B., Rusterholz, B., Schulthess, P., Lindemann, B., Haider, E., and Simon, W., 1986, Anion selectivity of metalloporphyrins in membranes, Heiv. Chim. Acta 69: 849–854.CrossRefGoogle Scholar
  15. Ammann, D., Oesch, V., Bührer, T., and Simon, W., 1987, Design of ionophores for ion-selective micro-sensors, Can. J. Physiol. Pharmacol. 65: 879–884.PubMedCrossRefGoogle Scholar
  16. Armstrong, W. M., and Garcia-Diaz, J. F., 1980, Ion-selectivity microelectrodes: Theory and technique, Fed. Proc. Fed. Am. Soc. Exp. Biol. 39: 2851–2859.Google Scholar
  17. Armstrong, W. M., Wojtkowski, W., and Bixennan, W. R., 1977, A new solid-state microelectrode for measuring intracellular chloride activities, Biot-him. Biophys. Acta 465: 165–170.CrossRefGoogle Scholar
  18. Ascher, P., Kunze, D. L., and Neild, J. O., 1976, Chloride distribution in Aplysia neurones, J. Physiol. (London) 256: 441–464.Google Scholar
  19. Ballanyi, K., and Grafe, P., 1985, An intracellular analysis of -y-aminobutyric-acid-associated ion movements in rat sympathetic neurones, J. Physiol. (London) 365: 41–58.Google Scholar
  20. Ballanyi, K., Grafe, P., and Ten Bruggencate, G., 1987, Ion activities and potassium uptake mechanisms of glial cells in guinea-pig olfactory cortex slices, J. Physiol. (London) 382: 159–174.Google Scholar
  21. Bates, R. G., 1973, Determination of pH: Theory and Practice, 2nd ed., Wiley, New York.Google Scholar
  22. Baumgarten. C. M., 1981, An improved liquid ion exchanger for chloride ion-selective microelectrodes, Am. J. Physiol. 241: C258 - C263.PubMedGoogle Scholar
  23. Baumgarten, C. M., and Fozzard, H. A., 1981, Intracellular chloride activity in mammalian ventricular muscle, Am. J. Physiol. 241: C121 - C129.PubMedGoogle Scholar
  24. Bockris, J. O., and Reddy, A. K. N., 1973, Modern Electrochemistry, Volume I, Plenum/Rosetta Edition, Plenum Press, New York.CrossRefGoogle Scholar
  25. Bolton, T. B., and Vaughan-Jones, R. D., 1977, Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle, J. Physiol. (London) 270: 801–833.Google Scholar
  26. Bomsztyk, K., Calalb, M. B., Smith, L., and Stanton, T. H., 1988, A microelectrometric titration method for measurement of total intracellular Cl- concentration, Am. J. Physiol. 254: C200 - C205.PubMedGoogle Scholar
  27. Boron, W. F., 1985, Intracellular pH-regulating mechanism of the squid axon. Relation between the external Na+ and HCO3 dependences, J. Gen. Physiol. 85: 325–345.PubMedCrossRefGoogle Scholar
  28. Brown, A. M., and Kunze, D. L., 1974, Ion activities in identifiable Aplysia neurons, in: /on-Selective Microelectrodes ( H. J. Berman and N. C. Herbert, eds.), Plenum Press, New York, pp. 57–73.CrossRefGoogle Scholar
  29. Brown, A. M., Walker, J. L., Jr., and Sutton, R. B., 1970, Increased chloride conductance as the proximate cause of hydrogen ion effects in Aplysia neurons, J. Gen. Physiol. 56: 559–582.PubMedCrossRefGoogle Scholar
  30. Brown, H. M., 1976, Intracellular Nat, K+ and CI— activities in Balanus photoreceptors, J. Gen. Physiol. 68: 281–290.PubMedCrossRefGoogle Scholar
  31. Buck, R. P., 1975, Electroanalytical chemistry of membranes, Crit. Rev. Anal. Chem. 5: 323–419.CrossRefGoogle Scholar
  32. Bührle, C. P., and Sonnhof, U., 1983, Intracellular ion activities and equilibrium potentials in motoneurones and glial cells of the frog spinal cord, Pfluegers Arch. 396: 144–153.CrossRefGoogle Scholar
  33. Bührle, C. P., and Sonnhof, U., 1985, The ionic mechanism of postsynaptic inhibition in motoneurones of the frog spinal cord, Neuroscience 14: 581–592.PubMedCrossRefGoogle Scholar
  34. Caldwell, P. C., 1954, An investigation of the intracellular pH of crab muscle fibres by means of micro-glass and micro-tungsten electrodes, J. Physiol. (London) 126: 169–180.Google Scholar
  35. Caldwell, P. C., 1958, Studies on the internal pH of large muscle and nerve fibres, J. Physiol. (London) 142: 22–62.Google Scholar
  36. Carr, C. W., 1968, Applications of membrane electrodes, Ann. N.Y. Acad. Sci. 148: 180–190.PubMedCrossRefGoogle Scholar
  37. Cassola, A. C., Mollenhauer, M., and Frömter, E., 1983, The intracellular chloride activity of rat kidney proximal tubular cells, Pfluegers Arch. 399: 259–265.CrossRefGoogle Scholar
  38. Casteels, R., and Kuriyama, H., 1965, Membrane potential and ionic content in pregnant and non-pregnant rat myometrium, J. Physiol. (London) 177: 263–287.Google Scholar
  39. Chao, A. C., and Armstrong, W. M., 1987, Cl--selective microelectrodes: Sensitivity to anionic Cl- transport inhibitors, Am. J. Physiol. 253: C343 - C347.PubMedGoogle Scholar
  40. Chao, A. C., Dix, J. A., Sellers, M. C., and Verkman, A. S., I989a, Fluorescence measurement of chloride transport in monolayer cultured cells: mechanisms of chloride transport in fibroblasts, Biophys. J. (in the press).Google Scholar
  41. Chao, A. C., Widdicombe, J. H., and Verkman, A. S., 1989b, Chloride conductive and cotransport mechanisms in cultures of canine tracheal epithelial cells measured by an entrapped fluorescent indicator, J. Membrane Biol. (in the press).Google Scholar
  42. Chen, P.-Y., and Verkman, A. S., 1988, Sodium-dependent chloride transport in basolateral membrane vesicles isolated from rabbit proximal tubules, Biochemistry 27: 655–660.PubMedCrossRefGoogle Scholar
  43. Chen, P.-Y., Illsley, N. P., and Verkman, A. S., 1988, Renal brush-border chloride transport mechanisms characterized using a fluorescent indicator, Am. J. Physiol. 254: F114 - F120.PubMedGoogle Scholar
  44. Christensen, H. N., 1982, Efflux used as a fad word? Trends Biosci. 7: 134.CrossRefGoogle Scholar
  45. Clegg, J. S., 1982, Alternative views on the role of water in cell function, in: Biophysics of Water ( F. Franks and S. F. Mathias, eds.), Wiley, New York, pp. 365–383.Google Scholar
  46. Clegg, J. S., 1984, Properties and metabolism of the aqueous cytoplasm and its boundaries, Am. J. Physiol. 246:R133–R15 l.Google Scholar
  47. Coombs, J. S., Eccles, J. C., and Fatt, P., 1955, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential, J. Physiol. (London) 130: 326–373.Google Scholar
  48. Cornwall, M. C., Peterson, D. F., Kunze, D. L., Walker, J. L., Jr., and Brown, A. M., 1970, Intracellular potassium and chloride activities measured with liquid ion exchanger microelectrodes, Brain Res. 23: 433–436.PubMedCrossRefGoogle Scholar
  49. Cotlove, E., Trantham, H. U., and Bowman, R. L., 1958, An instrument and method for automatic, rapid, accurate and sensitive titration of chloride in biological samples, J. Lab. Clin. Med. 51: 46 1468.Google Scholar
  50. Cotton, C. U., Weinstein, A. M., and Reuss, L., 1989, Osmotic water permeability of Necturus gallbladder epithelium, J. Gen. Physiol. 93: 649–679.PubMedCrossRefGoogle Scholar
  51. Cremaschi, D., Meyer, G., Botta, G., and Rossetti, C., 1987, The nature of the neutral Na+ -Cl- -coupled entry at the apical membrane of rabbit gallbladder epithelium: II. Na+ -Cl--symport is independent of K+, J. Membr. Biol. 95: 219–228.PubMedCrossRefGoogle Scholar
  52. Deisz, R. A., and Lux, H. D., 1982, The role of intracellular chloride in hyperpolarizing post-synaptic inhibition of crayfish stretch receptor neurones, J. Physiol. (London) 326: 123–138.Google Scholar
  53. Derbyshire, W., 1982, Dynamics of water in cellular systems, in: Biophysics of Water ( F. Franks and S. F. Mathias, eds.), Wiley, New York, pp. 249–253.Google Scholar
  54. Dick, D. A. T., 1979, Structure and properties of water in the cell, in: Mechanisms of Osmoregulation in Animals ( R. Gilles, ed.), Wiley, New York, pp. 3–45.Google Scholar
  55. Donahue, B. S., and Abercrombie, R. T., 1987, Free diffusion coefficient of ionic calcium in cytoplasm, Cell Calcium 8: 437–448.PubMedCrossRefGoogle Scholar
  56. Edzes, H. T., and Berendsen, H. J. C., 1975, The physical state of diffusible ions in cells, Annu. Rev. Biophys. Bioeng. 68: 159–178.Google Scholar
  57. Eisenman, G., 1967, Glass Electrodes for Hydrogen and Other Cations: Principles and Practice, Dekker, New York.Google Scholar
  58. Eisenman, G., 1968, Similarities and differences between liquid and solid ion exchangers and their usefulness as ion specific electrodes, Anal. Chem. 40: 310–320.CrossRefGoogle Scholar
  59. Eisenman, G., 1969, Theory of membrane electrode potentials: An examination of the parameters determining the selectivity of solid and liquid ion exchangers and of neutral ion-sequestering molecules, in: Ion-Selective Electrodes (R. A. Durst, ed.), National Bureau of Standards Special Publication 314, pp. 156.Google Scholar
  60. Fromm, M., and Schultz, S. G., 1981, Some properties of KCI-filled microelectrodes: Correlation of potassium “leakage” with tip resistance, J. Membr. Biol. 62: 239–244.PubMedCrossRefGoogle Scholar
  61. Frömter, E., Simon, M., and Gebler, B., 1981, A double-channel ion-selective microelectrode with the possibility of fluid ejection for localization of the electrode tip in the tissue, in: Progress in Enzyme and Ion-Selective Electrodes ( D. W. Ltibbers, H. Acker, R. P. Buck, G. Eisenman, M. Kessler, and W. Simon, eds.), Springer-Verlag, Berlin, pp. 35–44.CrossRefGoogle Scholar
  62. Fulton, A. B., 1982, How crowded is the cytoplasm? Cell 30: 345–347.PubMedCrossRefGoogle Scholar
  63. Galvan, M., Dörge, A., Beck, F., and Rick, R., 1984, Intracellular electrolyte concentrations in rat sympathetic neurones measured with an electron microprobe, Pfluegers Arch. 400: 274–279.CrossRefGoogle Scholar
  64. Gardner, D. R., and Moreton, R. B., 1985, Intracellular chloride in molluscan neurons, Comp. Biochem. Physiol. 80A: 461–467.CrossRefGoogle Scholar
  65. Gayton, D. C., and Hinke, J. A. M., 1968, The location of chloride in single striated muscle fibers of the giant barnacle, Can. J. Physiol. Pharmacol. 46: 213–219.PubMedCrossRefGoogle Scholar
  66. Gesteland, R. C., Howland, B., Lettvin, J. Y., and Pitts, W. H., 1959, Comments on microelectrodes, Proc. Inst. Radio Electron. Eng. Aust. 47: 1856–1861.Google Scholar
  67. Gilles, R., Bolis, L., and Kleinzeller, A., eds., 1987, Cell Volume Control: Fundamental and Comparative Aspects in Animal Cells, Curr. Top. Membr. Transp. 30.Google Scholar
  68. Giraldez, F., 1984, Active sodium transport and fluid secretion in the gallbladder epithelium of Necturus, J. Physiol. (London) 348: 431–455.Google Scholar
  69. Greger, R., and Schlatter, E., 1984, Mechanism of NaCI secretion in the rectal gland of spiny dogfish (Squalus acanthias), Pfluegers Arch. 402: 63–75.CrossRefGoogle Scholar
  70. Greger, R., Oberleithner, H., Schlatter, E., Cassola, A. C., and Weidtke, C., 1983, Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney, Pfluegers Arch. 399: 29–34.CrossRefGoogle Scholar
  71. Grinstein, S., McCulloch, L., and Rothstein, A., 1979, Transmembrane effects of irreversible inhibitors of anion transport in red blood cells: Evidence for mobile transport sites, J. Gen. Physiol. 73: 493–514.PubMedCrossRefGoogle Scholar
  72. Guibault, G. C., Durst, R. A. Frant, M. S., Freiser, H., Hansen, E. H., Light, T. S., Pungor, E., Rechnitz, G., Rice, N. M., Rohm, T. J., Simon, W., and Thomas, J. D. R., 1976, Recommendations for nomenclature of ion-selective electrodes, Pure Appl. Chem. 48: 127–132.Google Scholar
  73. Harris, G. L., and Betz, W. J., 1987, Evidence for active chloride accumulation in normal and denervated rat lumbrical muscle, J. Gen. Physiol. 90: 127–144.PubMedCrossRefGoogle Scholar
  74. Heinz, E., and Grassi, S., 1981, Interference of furosemide and other anion transport inhibitors with liquid Cl--exchanger electrodes, Biophys. J. 33: 222a.Google Scholar
  75. Hinke, J. A. M., 1969, Glass microelectrodes in the study of binding and compartmentalization of intracellular ions, in: Glass Microelectrodes ( M. Lavallee, O. F. Schanne, and N. C. Hebert, eds.), Wiley, New York, pp. 349–375.Google Scholar
  76. Hinke, J. A. M., 1987, Thirty years of ion-selective microelectrodes: Disappointments and successes, Can. J. Physiol. Pharmacol. 65: 873–878.PubMedCrossRefGoogle Scholar
  77. Hinke, J. A. M., and Gayton, D. C., 1971, Transmembrane K+ and Cl- activity gradients for the muscle fibre of the giant barnacle, Can. J. Physiol. Pharmacol. 49: 312–322.PubMedCrossRefGoogle Scholar
  78. Hironaka, T., and Morimoto, S., 1979, The resting membrane potential of frog sartorius muscle, J. Physiol. (London) 297: 1–8.Google Scholar
  79. Hoffmann, E. K., 1987, Volume regulation in cultured cells, Curr. Top. Membr. Transp. 30: 125–180.CrossRefGoogle Scholar
  80. Hoffmann, E. K., and Simonsen, L. O., 1989, Membrane mechanisms in volume and pH regulation in vertebrate cells, Physiol. Rev. 69: 315–382.PubMedGoogle Scholar
  81. Hoffmann, E. K., SchiOdt, M., and Dunham, P., 1986, The number of chloride—cation cotransport sites on Ehrlich ascites cells measured with [3H]bumetanide, Am. J. Physiol. 250: C688 - C693.PubMedGoogle Scholar
  82. Hofmeister, F., 1888, Zur lehre von der wirkung der salze. Zweite mitteilung, Arch. Exp. Pathol. Pharmakol. 24: 247–260.CrossRefGoogle Scholar
  83. Illsley, N. P., and Verkman, A. S., 1987, Membrane chloride transport measured using a chloride-sensitive fluorescent probe, Biochemistry 26: 1215–1219.PubMedCrossRefGoogle Scholar
  84. Ishibashi, K., Sasaki, S., and Yoshiyama, N., 1988, Intracellular chloride activity of arbbit proximal straight tubule perfused in vitro, Am. J. Physiol. 255: F49 - F56.PubMedGoogle Scholar
  85. IUPAC, 1979, Commission on analytical nomenclature (prepared for publication by G. G. Guibault). Recommendations for publishing manuscripts on ion-selective electrodes, Ion-selective Electrode Rev. 1, 139.Google Scholar
  86. Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells. Oxford University Press ( Clarendon ), London.Google Scholar
  87. Janz, G. J., and Ives, D. J. G., 1968, Silver, silver chloride electrodes, Ann. N.Y. Acad. Sci. 148: 210–221.CrossRefGoogle Scholar
  88. Kehoe, J., 1972, Ionic mechanisms of a two component cholinergie inhibition in Aplysia neurones, J. Physiol. (London) 225: 85–114.Google Scholar
  89. Kenyon, J., and Gibbons, W. R., 1977, Effects of low chloride solutions on action potentials of sheep cardiac Purkinje fibres, J. Gen. Physiol. 70: 635–660.PubMedCrossRefGoogle Scholar
  90. Kerkut, G. A., and Meech, R. W., 1966, The internal chloride concentration of H and D cells in the snail brain, Comp. Biochem. Physiol. 19: 819–832.CrossRefGoogle Scholar
  91. Kettenmann, H., 1987, K+ and Cl- uptake by cultured oligodendrocytes, Can. J. Physiol. Pharmacol. 65: 1033–1037.PubMedCrossRefGoogle Scholar
  92. Keynes, R. D., 1963, Chloride in the squid giant axon, J. Physiol. (London) 169: 690–705.Google Scholar
  93. Khuri, R. N., Bogharian, K. K., and Agulian, S. K., 1974, Intracellular bicarbonate in single skeletal muscle fibers, Pfluegers Arch. 349: 285–299.CrossRefGoogle Scholar
  94. Khuri, R. N., Agulian, S. K., and Bogharian, K. K., 1976, Intracellular bicarbonate of skeletal muscle under different metabolic states, Am. J. Physiol. 230: 228–232.PubMedGoogle Scholar
  95. Kondo, Y., Bührer, T., Seiler, K., Frömter, E. and Simon, W., 1989, A new double-barrelled, ionophorebased microelectrode for chloride ions, Pfluegers Arch. 414: 663–668.CrossRefGoogle Scholar
  96. Koryta, J., 1975, Ion-Selective Electrodes, Cambridge University Press, London.Google Scholar
  97. Koryta, J., 1981, Theory of ion-selective electrodes, in: Ion-Selective Microelectrodes and Their Use in Excitable Tissues ( E. Sykova, P. Hnik, and L. Vyklicky, eds.), Plenum Press, New York, pp. 3–11.CrossRefGoogle Scholar
  98. Koryta, J., and Stun, K., 1983, lon-Selective Electrodes, 2nd ed., Cambridge University Press, London.CrossRefGoogle Scholar
  99. Kraig, R. P., and Cooper, J. L., 1987, Bicarbonate and ammonia changes in brain during spreading depression, Can. J. Physiol. Pharmacol. 65: 1099–1104.PubMedCrossRefGoogle Scholar
  100. Krapf, R., Berry, C. A., and Verkman, A. S., 1988, Estimation of intracellular chloride activity in isolated perfused rabbit proximal convoluted tubules using a fluorescent indicator, Biophys. J. 53: 955–962.PubMedCrossRefGoogle Scholar
  101. Lakshminarayanaiah, N., 1976, Membrane Electrodes, Academic Press, New York.Google Scholar
  102. Larson, M., and Spring, K., 1987, Volume regulation in epithelia, Curr. Top. Membr. Transp. 30: 105–123.CrossRefGoogle Scholar
  103. Lauf, P. K., McManus, T. J., Hass, M., Forbush, B., Duhn, J., Flatman, P. W., Saier, M. H., Jr., and Russell, J. M., 1987, Physiology and biophysics of chloride and cation cotransport across cell membranes, Fed. Proc. 46: 2377–2394.PubMedGoogle Scholar
  104. Lee, C. O., 1981, Ionic activities in cardiac muscle cells and applications of ion-selective microelectrodes, Am. J. Physiol. 241: H459 - H478.PubMedGoogle Scholar
  105. Lev, A. A., and Armstrong, W. M., 1975, Ionic activities in cells, Curr. Top. Membr. Transp. 6: 59–123.CrossRefGoogle Scholar
  106. Lux, H. D., 1974, Fast recording ion specific microelectrodes: Their use in pharmacological studies in the CNS, Neuropharmacology 13: 509–517.PubMedCrossRefGoogle Scholar
  107. McCaig, D., and Leader, J. P., 1984, Intracellular chloride activity in the extensor digitorum longus (EDL) muscle of the rat, J. Membr. Biol. 81: 9–17.PubMedCrossRefGoogle Scholar
  108. MacKnight, A. D. C., 1985, The role of anions in cellular volume regulation, Pfluegers Arch. 405 (Suppl. I): S12 - S16.Google Scholar
  109. Marranes, R., and DeHemptinne, A., 1978, Conduction velocity of the action potential in isolated cardiac fibers; transient effects under influence of organic anions, Arch. Int. Physiol. 86: I162 - I163.CrossRefGoogle Scholar
  110. Mauro, A., 1954, Electrochemical potential difference of chloride ion in the giant squid axon—sea water system, Fed. Proc. Fed. Am. Soc. Exp. Biol. 13: 96.Google Scholar
  111. Moody, G. J., and Thomas, J. D. R., 1971, Selective Ion Sensitive Electrodes, Merrow, Durham, England. Morf, W. E., 1981, The principles of ion-selective electrodes and of membrane transport, in: Studies in Analytical Chemistry, Volume 2, Akadémiai Kiadd, Budapest, and Elsevier, Amsterdam.Google Scholar
  112. Morf, W. E., Ruprecht, H., Oggenfuss, P., and Simon, W., 1985, Ion transport in asymmetric artificial membranes mediated by neutral carriers, in: Ion Measurements in Physiology and Medicine (M. Kessler, D. K. Harrison, and J. Höper, eds.), Springer-Verlag, Berlin, pp. 1–5.Google Scholar
  113. Morris, M. E., and Krnjevie, K., eds., 1987, Ion-Selective Microelectrodes and Excitable Tissues, Can. J. Physiol. Pharmacol. 65: 867–1110.Google Scholar
  114. Moser, H., 1985, Intracellular pH regulation in the sensory neurone of the stretch receptor of the crayfish (Astacus fluviatilis), J. Physiol. (London) 362: 23–38.Google Scholar
  115. Munoz, J.-L., Deyhimi, F., and Coles, J. A., 1983, Silanization of glass in the making of ion-sensitive microelectrodes, J. Neurosci. Methods 8: 231–247.PubMedCrossRefGoogle Scholar
  116. Neild, T. O., and Thomas, R. C., 1973, New design for a chloride-sensitive microelectrode, J. Physiol. (London) 231: 7P - 8 P.Google Scholar
  117. Neild, T. O., and Thomas, R. C., 1974, Intracellular chloride activity and the effects of acetylcholine in snail neurones, J. Physiol. (London) 242: 453–470.Google Scholar
  118. Oberleithner, H., Guggino, W., and Giebisch, G., 1982, Mechanism of distal tubular chloride transport in Amphiuma kidney, Am. J. Physiol. 242: F331 - F339.PubMedGoogle Scholar
  119. Orme, F. N., 1969, Liquid ion-exchanger microelectrodes, in: Glass Microelectrodes ( M. Lavallée, O. F. Schanne, and N. C. Hébert, eds.), Wiley, New York, pp. 376–395.Google Scholar
  120. Owen, J. D., Brown, H. M., and Saunders, J. H., 1975, Chloride activity in the giant cell of Aplysia, Biophys. J. 15: 45a.Google Scholar
  121. Palmer, L. G., and Civan, M. M., 1977, Distribution of Nat, K+ and Cl- between nucleus and cytoplasm in Chironomus salivary gland cells, J. Membr. Biol. 33: 41–61.PubMedCrossRefGoogle Scholar
  122. Parsons, R., 1959, Handbook of Electrochemical Constants, Butterworths, London.Google Scholar
  123. Pelzer, D., Trube, G., and Piper, H. M., 1984, Low resting potentials in single isolated heart cells due to membrane damage by the recording microelectrode, Pfluegers Arch. 400: 197–199.CrossRefGoogle Scholar
  124. Pollard, H. B., Creutz, C. E., Pazoles, C. J., and Hansen, J., 1977, Calcium binding properties of monovalent anions commonly used to substitute for chloride in physiological salt solutions, Anal. Biochem. 83: 311–314.PubMedCrossRefGoogle Scholar
  125. Purves, R. D., 1981, Microelectrode Methods for Intracellular Recording and lontophoresis, Academic Press, New York.Google Scholar
  126. Rail, W., 1977, Core conductor theory and cable properties of neurons, in: Handbook of Physiology, Volume I, The Nervous System, Part 1, ( E. R. Kandel, ed.), American Physiological Society, Bethesda, Md., pp. 39–97.Google Scholar
  127. Reuss, L., 1985, Changes in cell volume measured with an electrophysiologic technique, Proc. Natl. Acad. Sci. USA 82: 6014–6018.PubMedCrossRefGoogle Scholar
  128. Reuss, L., Constantin, J. L., and Bazile, J. E., 1987, Diphenylamine-2-carboxylate blocks Cl- HCO3 exchange in Necturus gallbladder epithelium, Am. J. Physiol. 253: C79 - C89.PubMedGoogle Scholar
  129. Robinson, R. A., and Stokes, R. H., 1965, Electrolyte Solutions, 2nd ed. rev., Butterworths, London. Roos, A., and Boron, W. F., 1981, Intracellular pH, Physiol. Rev. 61: 296–434.Google Scholar
  130. Rosenberg, M., 1973, A comparison of chloride and citrate filled microelectrodes for d-c recording, J. Appl. Physiol. 35: 166–168.PubMedGoogle Scholar
  131. Ross, J. W., 1969, Solid-state and liquid membrane ion-selective electrodes, in: Ion-Selective Electrodes (R. A. Durst, ed.), National Bureau of Standards Special Publication 314, pp. 57–88.Google Scholar
  132. Russell, J. M., and Brown, A. M., 1972a, Active transport of chloride by the giant neuron of the Aplysia abdominal ganglion, J. Gen. Physiol. 60:499–518.Google Scholar
  133. Russell, J. M., and Brown, A. M., 1972b, Active transport of potassium by the giant neuron of the Aplysia abdominal ganglion, J. Gen. Physiol. 60: 519–533.PubMedCrossRefGoogle Scholar
  134. Sandblom, J., and Orme, F., 1972, Liquid membranes as electrodes and biological models, in: Membranes—A Series of Advances, Volume 1 ( G. Eisenman, ed.), Dekker, New York, pp. 125–177.Google Scholar
  135. Sandblom, J., Eisenman, G., and Walker, J. L., Jr., 1967, Electrical phenomena associated with the transport of ions and ion pairs in liquid ion-exchange membranes. I. Zero current properties, J. Physiol. Chem. 71: 3862–3870.CrossRefGoogle Scholar
  136. Saunders, J. H., and Brown, H. M., 1977, Liquid and solid-state Cl--sensitive microelectrodes, J. Gen. Physiol. 70: 507–530.PubMedCrossRefGoogle Scholar
  137. Schulthess, P., Ammann, D., Simon, W., Caderas, C. Stepanek, R., and Kräutler, B., 1984, A lipophilic derivative of vitamin B12 as a selective carrier for anions, Hely. Chim. Acta 67: 1026–1032.CrossRefGoogle Scholar
  138. Schulthess, P., Ammann, D., Kräutler, B., Caderas, C., Stepanek, R., and Simon, W., 1985, Nitrite selective liquid membrane electrode, Anal. Chem. 57: 1397–1401.CrossRefGoogle Scholar
  139. Serve, G., Endres, W., and Grafe, P., 1988, Continuous electrophysiological measurements of changes in cell volume of motoneurons in the isolated frog spinal cord, Pfluegers Arch. 411: 410–415.CrossRefGoogle Scholar
  140. Sharp, A. P., and Thomas, R. C., 1981, The effects of chloride substitution on intracellular pH in crab muscle, J. Physiol. (London) 312: 71–80.Google Scholar
  141. Sollner, K., 1968, Membrane electrodes, Ann. N.Y. Acad. Sci. 148: 154–179.PubMedCrossRefGoogle Scholar
  142. Sollner, K., and Shean, G. M., 1964, Liquid ion-exchange membranes of extreme selectivity and high permeability for anions, J. Am. Chem. Soc. 86: 1901–1902.CrossRefGoogle Scholar
  143. Spitzer, K. W., and Walker, J. L., Jr., 1980, Intracellular chloride activity in quiescent cat papillary muscle, Am. J. Physiol. 238: H487–H493.PubMedGoogle Scholar
  144. Spring, K. R., and Ericson, A.-C., 1982, Epithelial cell volume modulation and regulation, J. Membr. Biol. 69: 169–176.Google Scholar
  145. Spring, K. R., and Kimura, G., 1978, Chloride reabsorption by renal proximal tubules of Necturus, J. Membr. Biol. 38: 233–254.PubMedCrossRefGoogle Scholar
  146. Srinivasan, K., and Rechnitz, G. A., 1969, Selectivity studies on liquid membrane ion-selective electrodes, Anal. Chem. 40: 1203–1208.CrossRefGoogle Scholar
  147. Stein, W. D., 1986, Transport and Diffusion across the Cell Membrane, Academic Press, New York. Strickholm, A., and Wallin, B. G., 1965, Intracellular chloride activity of crayfish giant axons, Nature 208: 790–791.Google Scholar
  148. Tasaki, I., and Singer, I., 1968, Some problems involved in electric measurements of biological systems, Ann. N.Y. Acad. Sci. 148: 36–53.PubMedCrossRefGoogle Scholar
  149. Taylor, P. S., and Thomas, R. C., 1984, The effect of leakage on micro-electrode measurements of intracellular sodium activity in crab muscle fibres, J. Physiol. (London) 352: 539–550.Google Scholar
  150. Thomas, R. C., 1972, Intracellular sodium activity and the sodium pump in snail neurones, J. Physiol. (London) 220: 55–71.Google Scholar
  151. Thomas, R. C., 1976, The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones, J. Physiol. (London) 255: 715–735.Google Scholar
  152. Thomas, R. C., 1977, The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurons, J. Physiol. (London) 273: 317–338.Google Scholar
  153. Thomas, R. C., 1978, Ion-Sensitive Intracellular Microelectrodes, Academic Press, New York.Google Scholar
  154. Thomas, R. C., 1985, Eccentric double micropipette suitable both for pHi microelectrodes and for intracellular iontophoresis, J. Physiol. (London) 371: 24 P.Google Scholar
  155. Thomas, R. C., and Cohen, C. J., 1981, A liquid ion-exchanger alternative to KCI for filling intracellular reference microelectrodes, Pfluegers Arch. 390: 96–98.CrossRefGoogle Scholar
  156. Thompson, S. M., Deisz, R. A., and Prince, D. A., 1988, Relative contributions of passive equilibrium and active transport to the distribution of chloride in mammalian cortical neurons, J. Neurophysiol. 60: 105–124.PubMedGoogle Scholar
  157. Tsien, R. Y., 1980, Liquid sensors for ion-selective microelectrodes, Trends Neurosci. 3: 219–221.CrossRefGoogle Scholar
  158. Tsien, R. Y., 1983, Intracellular measurements of ion activities, Annu. Rev. Biophys. Bioeng. 12: 91–116.PubMedCrossRefGoogle Scholar
  159. Tsien, R. Y., and Rink, T. J., 1980, Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium, Biochim. Biophys. Acta 599: 623–638.PubMedCrossRefGoogle Scholar
  160. Tsien, R. Y., and Rink, T. J., 1981, Cat+-selective electrodes: A novel PVC-gelled neutral carrier mixture compared with other currently available sensors, J. Neurosci. Methods 4: 73–86.PubMedCrossRefGoogle Scholar
  161. Vaughan-Jones, R. D., 1979a, Non-passive chloride distribution in mammalian heart muscle: Micro-electrode measurement of the intracellular chloride activity, J. Physiol. (London) 295: 83–109.Google Scholar
  162. Vaughan-Jones, R. D., 1979b, Regulation of chloride in quiescent sheep-heart Purkinje fibres studied using intracellular chloride and pH-sensitive micro-electrodes, J. Physiol. (London) 295: 111–137.Google Scholar
  163. Vaughan-Jones, R. D., 1982, Chloride activity and its control in skeletal and cardiac muscle, Philos. Trans. R. Soc. London Ser. B 299: 537–548.CrossRefGoogle Scholar
  164. Vaughan-Jones, R. D., 1986, An investigation of chloride—bicarbonate exchange in the sheep cardiac Purkinje fibre, J. Physiol. (London) 379: 377–406.Google Scholar
  165. Verkman, A. S., Chen, P.-Y., Davis, B., Fong, P., Illsley, N. P., and Krapf, R., 1988, Development of chloride-sensitive fluorescent indicators, in: Cellular and Molecular Basis of Cystic Fibrosis ( G. Mastella and P. M. Quinton, eds.), San Francisco Press, San Francisco, pp. 471–478.Google Scholar
  166. Verkman, A. S., Sellers, M. C., Chao, A. C., Leung, T., and Ketcham, R., 1989a, Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications, Anal. Biochem. 178: 355–361.PubMedCrossRefGoogle Scholar
  167. Verkman, A. S., Takla, R., Sefton, B., Basbaum, C., and Widdicombe, J. H., 19896, Fluorescence assay of chloride transport in liposomes reconstituted with chloride transporters, Biochemistry 28: 4240–4244.Google Scholar
  168. Walker, J. L., Jr., 1971, Ion specific liquid ion exchanger microelectrodes, Anal. Chem. 43 (3): 89A - 93A.Google Scholar
  169. Walker, J. L., Jr., and Brown, H. M., 1977, Intracellular ionic activity measurements in nerve and muscle, Physiol. Rev. 57: 729–778.PubMedGoogle Scholar
  170. Wallin, B. G., 1967, Intracellular ion concentrations in single crayfish axons, Acta Physiol. Scand. 70: 419–430.PubMedCrossRefGoogle Scholar
  171. Wegmann, D., Weiss, H., Ammann, D., Morf, W. E., Pretsch, E., Sugahara, K., and Simon, W., 1984, Anion-selective liquid membrane electrodes based on lipophilic quaternary ammonium compounds, Mikrochim. Acta 3: 1–16.CrossRefGoogle Scholar
  172. Wills, N. K., 1985, Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium, J. Physiol. (London) 358: 433–445.Google Scholar
  173. Willumsen, N. J., Davis, C. W., and Boucher, R. C., 1989, Intracellular Cl- activity and cellular Cl- pathways in cultured human airway epithelium, Am. J. Physiol. 256: C1033 - C1044.PubMedGoogle Scholar
  174. Woodbury, J. W., and Miles, P. R., 1973, Anion conductance of frog muscle membranes: One channel, two kinds of pH dependence, J. Gen. Physiol. 62: 324–353.PubMedCrossRefGoogle Scholar
  175. World Precision Instruments, 1988, Electrodes, accessories and supplies, Cat. #2.Google Scholar
  176. Wright, F. S., and McDougal, W. S., 1972, Potassium-specific ion-exchanger microelectrodes to measure K+ activity in the renal distal tubule, Yale J. Biol. Med. 45: 373–383.Google Scholar
  177. Wuhrmann, P., Ineichen, H., Riesen-Willi, V., and Lezzi, M., 1979, Change in nuclear potassium electrochemical activity and puffing of potassium-sensitive salivary chromosome regions during Chironomus development, Proc. Natl. Acad. Sci. USA 76: 806–808.PubMedCrossRefGoogle Scholar
  178. Wuthier, U., Pham, H. V., Zünd, R., Welti, D., Funck, R. J. J., Bezegh, A., Ammann, D., Pretsch, E., and Simon, W., 1984, Tin organic compounds as neutral carriers for anion selective electrodes, Anal. Chem. 56: 535–538.CrossRefGoogle Scholar
  179. Yamaguchi, H., 1986, Recording of intracellular Ca2+ from smooth muscle cells by sub-micron tip, double-barrelled Ca2+-selective microelectrodes, Cell Calcium 7: 203–219.PubMedCrossRefGoogle Scholar
  180. Zeuthen, T., 1980, How to make and use double-barreled ion-selective microelectrodes, Curr. Top. Membr. Transp. 13: 31–47.CrossRefGoogle Scholar
  181. Zeuthen, T., 1985, The advantages of transient experiments over steady-state experiments, in: Ion Measurements in Physiology and Medicine ( M. Kessler, D. K. Harrison, and J. Hüper, eds.), Springer-Verlag, Berlin, pp. 150–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Francisco J. Alvarez-Leefmans
    • 1
    • 4
  • Fernando Giraldez
    • 2
  • John M. Russell
    • 3
  1. 1.Departamento de Farmacología y ToxicologíaCentro de Investigacíon y de Estudios Avanzados deo I. P. N.Mexico D. F.Mexico
  2. 2.Departamento de NeurobiologíaInstituto Mexicano de PsiquitríaMexico D. F.Mexico
  3. 3.Departamento de Bioquimica, Biología Molecular y FisiologíaUniversidad de ValladolidValladolidSpain
  4. 4.Department of Physiology and BiophysicsUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations