Radiofluorinated Enzyme Probes of Dopaminergic Function

  • Jorge R. Barrio
  • N. Satyamurthy
  • M. Namavari
  • G. Lacan


Radiofluorinated analogs of enzyme substrates offer a useful strategy for designing radiotracers to probe or label specific enzymes and their function (1). They are being used to investigate the dopaminergic system in vivo to obtain information about the structural requirements associated with neurotransmitter enzyme function as well as critical information about pharmacological information and the effects of disease. Radiofluorinated enzyme probes (e.g. 6-[18F]fluoro-L-DOPA) have been useful to uncover the biochemical mechanisms behind specific brain tracer kinetic profiles and to understand kinetic changes occurring with the specifically designed radiotracers as a result of pharmacological interventions, centrally acting drugs (i.e., methamphetamine, cocaine), mood disorders or cell degeneration.


Radiochemical Yield Cereb Blood Flow Brain Capillary Dopamine Metabolism Endogenous Dopamine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Barrio, Approaches to the design of biochemical probes for positron emission tomography, Neurochem Res. 16: 1047–1054(1991).PubMedCrossRefGoogle Scholar
  2. 2.
    E.S. Garnett, G. Firnau, and C. Nahmias, Dopamine visualized in the basal ganglia of living man, Nature 305: 137–138 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    W.P. Melega, A. Luxen, M.M. Perlmutter, C.H.K. Nissenson, M.E. Phelps, and J.R. Barrio, Comparative in-vivo metabolism of 6-[18F]fluoro-L-DOPA and [3H]L-DOPA in rats, Biochem Pharmacol 39: 1853–1860 (1990).PubMedCrossRefGoogle Scholar
  4. 4.
    A.C. Michael, J.B. Justice Jr, and D.B. Neill, In vivo voltammetric determination of the kinetics of dopamine metabolism in the rat, Neurosci Lett. 56: 365–369 (1985).PubMedCrossRefGoogle Scholar
  5. 5.
    P.L. Wood, H.S. Kim, K. Stocklin, and T.S. Rao, Dynamics of the striatal 3-MT pool in rat and mouse: Species differences as assessed by steady-state measurements and intracerebral dialysis, Life Sci. 42: 2275–2281 (1988).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Doteuchi, C. Wang, and E. Costa, Compartmentation of dopamine in rat striatum, Mol Pharmacol. 10: 225–234 (1974).PubMedGoogle Scholar
  7. 7.
    Z.L. Rossetti, C.P. Silvia, D. Krajnc, N.H. Neff, and M. Hadjiconstantinou, Aromatic-L-amino acid decarboxylase is modulated by D1-receptors in rat retina, J. Neurochem. 54: 787–791 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    R. Ackermann, W.P. Melega, and M.E. Phelps, Selective loss of 3-[C-14]-L-DOPA labeling in forebrain mesolimbic structures of rat induced by self-stimulation of dopaminergic neurons in ventral segmental area and substantia nigra, J. Cereb Blood Flow Metab. 11: S608 (1991).Google Scholar
  9. 9.
    W.P. Melega, J.R. Barrio, M.E. Phelps, and R. Ackermann, Electrical self-stimulation of rat medial forebrain bundle increases both endogenous dopamine and pulse labeled [3H]L-DOPA striatal metabolism, Soc Neurosci Abstracts 17: 501 (1991).Google Scholar
  10. 10.
    M. Hadjiconstantinou, Z.L. Rossetti, C. Silvia, D. Krajnc, and N.H. Neff, Aromatic L-amino acid decarboxylase activity of the rat retina is modulated in-vivo by environmental light, J. Neurochem. 51: 1560–1564 (1988).PubMedCrossRefGoogle Scholar
  11. 11.
    Z.L. Rossetti, M. Krajnc, N.H. Neff, and M. Hadjiconstantinou, Modulation of retinal aromatic-L-amino-acid decarboxylase by α2-adrenoreceptors, J. Neurochem. 52: 647–652 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    W.P. Melega, J.M. Hoffman, A. Luxen, C.H.K. Nissenson, M.E. Phelps, and J.R. Barrio, The effects of carbidopa on the metabolism of 6-[18F]fluoro-L-dopa in rats, monkeys and humans, Life Sciences 47: 149–157 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    D.W. Cheng, R.J. Boado, and J.R. Barrio, Carbidopa inhibition of aromatic L-amino acid decarboxylase in rat brain capillaries, Faseb J. 6: A1589 (1992).Google Scholar
  14. 14.
    W.P. Melega, J.M. Hoffman, J.S. Schneider, M.E. Phelps, and J.R. Barrio, 6-[18F]fluoro-L-DOPA metabolism in MPTP-treated monkeys: Assessment of tracer methodologies for positron emission tomography, Brain Res. 543: 271–276 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    S.C. Huang, D.C. Yu, J.R. Barrio, S.C. Grafton, W.P. Melega, J.M. Hoffman, N. Satyamurthy, J.C. Mazziotta, and M.E. Phelps, Kinetics and modeling of L-6-[18F]fluoro-DOPA in human positron emission tomographic studies, J. Cereb Blood Flow Metab. 11: 898–913 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Gjedde, J. Reith, S. Dyve, G. Leger, M. Guttman, M. Diksic, A. Evans, and H. Kuwabara, Dopa decarboxylase activity of the living human brain, Proc Nat Acad Sci. (USA) 88: 2721–2725 (1991).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Namavari, A. Bishop, N. Satyamurthy, G. Bida, and J.R. Barrio, Regioselective radiofluorodestannylation with [18F]F2, and [18F]CH3COOF: A high yield synthesis of 6-[18F]Fluoro-L-dopa, Appl Rad Isot. 43: 989–996 (1992).CrossRefGoogle Scholar
  18. 18.
    W.P. Melega, M.M. Perlmutter, A. Luxen, C.H.K. Nissenson, S.T. Grafton, S.C. Huang, M.E. Phelps, and J.R. Barrio, 4-[18F]Fluoro-L-m-tyrosine: An L-3,4-dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography, 7. Neurochem. 53: 311–314 (1989).CrossRefGoogle Scholar
  19. 19.
    J.R. Barrio, W.P. Melega, J. Quintana, N. Satyamurthy, D.C. Yu, M. Namavari, S. Cherry, S.C. Huang, and M.E. Phelps, Comparative kinetic and biochemical behavior of 6-[18F]fluoro-,4[18F]fluoro-L-metatyrosines and 6-[18F]fluoro-L-dopa, 26th International Symposium on Cerebral Blood Flow and Metabolism, Sendai, Japan, May 22–28, 1993.Google Scholar
  20. 20.
    M. Namavari, G. Lacan, N. Satyamurthy, and J.R. Barrio, Efficient syntheses of radiofluorinated analogs of L-DOPA via regioselective radiofluorodestannylation, American Chemical Society National Meeting, Washington, D.C., August, 1992.Google Scholar
  21. 21.
    I.A. McDonald, J.M. Lacoste, P. Bey, J. Wagner, M. Zreika, and M.A. Palfreyman, Dual enzyme-activated irreversible inhibition of monoamine oxidase, Bioorganic Chem. 14: 103–118(1986).CrossRefGoogle Scholar
  22. 22.
    O.T. De Jesus, J.E. Holden, C. Endres, D. Murali, T.R. Oakes, S. Shelton, H. Uno, D. Houser, L. Freund, S.B. Perlman, and R.J. Nickles, Visualization of dopamine nerve terminals by positron tomography using [18F]fluoro-β-fluoromethylene-m-tyrosine, Brain Res. 597: 151–154 (1992).CrossRefGoogle Scholar
  23. 23.
    J.R. Barrio, G. Lacan, N. Satyamurthy, D.C. Yu, S.C. Huang, and M.E. Phelps, L-[E]-β-fluoromethylene-6-[F-18]fluoro-m-tyrosine: A specific central dopamine probe, J. Nucl Med. 34: 202P (1993).Google Scholar
  24. 24.
    R.J. Nickles, M.E. Daube, and T.J. Ruth, An 18O2 target for the production of [18F]F2, Int J. Appl Radiat Isot. 35: 117–122 (1984).CrossRefGoogle Scholar
  25. 25.
    G.T. Bida, G.O. Hendry, A.J. Bishop, and N. Satyamurthy, [Fluorine-18]F2 production via low energy proton irradiation of [oxygen-18]O2 plus F2, Proceedings of the IVth International Workshop on Targetry and Target Chemistry, Villigen, Switzerland, August, 1992.Google Scholar
  26. 26.
    Namavari M, Satyamurthy N, Barrio JR: Synthesis of 6-[18F]- and 4-[18F]Fluoro-L-m-tyrosines via Regioselective Radiofluorodestannylation, Appl Rad Isot. 44: 527–536, (1993).CrossRefGoogle Scholar
  27. 27.
    A. Luxen, J.R. Barrio, G.T. Bida, and N. Satyamurthy, Regioselective radiofluorination: A simple, high yield synthesis of 6-[F-18]fluorodopa, J. Labeled Compd Radiopharm. 23: 1066–1067 (1986).Google Scholar
  28. 28.
    A. Luxen, M. Perlmutter, G.T. Bida, G. Van Moffaert, J.S. Cook, N. Satyamurthy, M.E. Phelps, and J.R. Barrio, Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET, Appl Radiat Isot. 41: 275–281 (1990).CrossRefGoogle Scholar
  29. 29.
    R. Chirakal, G. Firnau, and E.S. Garnett, High yield synthesis of 6-[18F]fluoro-L-dopa, J. Nucl Med. 27: 417–421 (1986).PubMedGoogle Scholar
  30. 30.
    G. Firnau, R. Chirakal, E.S. Garnett, Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-dopa, J. Nucl Med. 25: 1228–1233 (1984).PubMedGoogle Scholar
  31. 31.
    M.J. Adam, J.R. Grierson, T.J. Ruth, and S. Jivan, Reaction of [18F]acetyl hypofluorite with derivatives of dihydroxyphenylalanine: Synthesis of L-[18F]6-fluorodopa, Appl Radiat Isot. 37: 877–882 (1986a).CrossRefGoogle Scholar
  32. 32.
    M.J. Adam, T.J. Ruth, J.R. Grierson, B. Abeysekera, and B.D. Pate, Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypofluorite, J. Nucl Med. 27: 1462–1466 (1986b).PubMedGoogle Scholar
  33. 33.
    O.T. De Jesus, J.J. Sunderland, R.J. Nickles, J. Mukherjee, and E.H. Appelman, Synthesis of radiofluorinated analogs of m-tyrosine as potential L-dopa tracers via direct reaction with acetyl hypofluorite, Appl Radiat Isot. 41: 433–437 (1990).CrossRefGoogle Scholar
  34. 34.
    R. Chirakal, G.J. Schrobilgen, G. Firnau, and S. Garnett, Synthesis of 18F labelled fluoro-m-tyrosine, fluoro-m-tyramine and fluoro-3-hydroxyphenylacetic acid, Appl Radiat Isot. 42: 113–119 (1991).CrossRefGoogle Scholar
  35. 35.
    M.M. Perlmutter, N. Satyamurthy, A. Luxen, M.E. Phelps, and J.R. Barrio, Synthesis of 4-[18F]fluoro-L-m-tyrosine: A model analog for in-vivo assessment of central dopaminergic function, Appl Radiat Isot. 41: 801–807 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jorge R. Barrio
    • 1
  • N. Satyamurthy
    • 1
  • M. Namavari
    • 1
  • G. Lacan
    • 1
  1. 1.Department of Molecular and Medical Pharmacology and Laboratory of Structural Biology and Molecular MedicineUCLA School of MedicineLos AngelesUSA

Personalised recommendations