Skip to main content

Radiofluorinated Enzyme Probes of Dopaminergic Function

  • Chapter
  • 152 Accesses

Abstract

Radiofluorinated analogs of enzyme substrates offer a useful strategy for designing radiotracers to probe or label specific enzymes and their function (1). They are being used to investigate the dopaminergic system in vivo to obtain information about the structural requirements associated with neurotransmitter enzyme function as well as critical information about pharmacological information and the effects of disease. Radiofluorinated enzyme probes (e.g. 6-[18F]fluoro-L-DOPA) have been useful to uncover the biochemical mechanisms behind specific brain tracer kinetic profiles and to understand kinetic changes occurring with the specifically designed radiotracers as a result of pharmacological interventions, centrally acting drugs (i.e., methamphetamine, cocaine), mood disorders or cell degeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Barrio, Approaches to the design of biochemical probes for positron emission tomography, Neurochem Res. 16: 1047–1054(1991).

    Article  PubMed  CAS  Google Scholar 

  2. E.S. Garnett, G. Firnau, and C. Nahmias, Dopamine visualized in the basal ganglia of living man, Nature 305: 137–138 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. W.P. Melega, A. Luxen, M.M. Perlmutter, C.H.K. Nissenson, M.E. Phelps, and J.R. Barrio, Comparative in-vivo metabolism of 6-[18F]fluoro-L-DOPA and [3H]L-DOPA in rats, Biochem Pharmacol 39: 1853–1860 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. A.C. Michael, J.B. Justice Jr, and D.B. Neill, In vivo voltammetric determination of the kinetics of dopamine metabolism in the rat, Neurosci Lett. 56: 365–369 (1985).

    Article  PubMed  CAS  Google Scholar 

  5. P.L. Wood, H.S. Kim, K. Stocklin, and T.S. Rao, Dynamics of the striatal 3-MT pool in rat and mouse: Species differences as assessed by steady-state measurements and intracerebral dialysis, Life Sci. 42: 2275–2281 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. M. Doteuchi, C. Wang, and E. Costa, Compartmentation of dopamine in rat striatum, Mol Pharmacol. 10: 225–234 (1974).

    PubMed  CAS  Google Scholar 

  7. Z.L. Rossetti, C.P. Silvia, D. Krajnc, N.H. Neff, and M. Hadjiconstantinou, Aromatic-L-amino acid decarboxylase is modulated by D1-receptors in rat retina, J. Neurochem. 54: 787–791 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. R. Ackermann, W.P. Melega, and M.E. Phelps, Selective loss of 3-[C-14]-L-DOPA labeling in forebrain mesolimbic structures of rat induced by self-stimulation of dopaminergic neurons in ventral segmental area and substantia nigra, J. Cereb Blood Flow Metab. 11: S608 (1991).

    Google Scholar 

  9. W.P. Melega, J.R. Barrio, M.E. Phelps, and R. Ackermann, Electrical self-stimulation of rat medial forebrain bundle increases both endogenous dopamine and pulse labeled [3H]L-DOPA striatal metabolism, Soc Neurosci Abstracts 17: 501 (1991).

    Google Scholar 

  10. M. Hadjiconstantinou, Z.L. Rossetti, C. Silvia, D. Krajnc, and N.H. Neff, Aromatic L-amino acid decarboxylase activity of the rat retina is modulated in-vivo by environmental light, J. Neurochem. 51: 1560–1564 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. Z.L. Rossetti, M. Krajnc, N.H. Neff, and M. Hadjiconstantinou, Modulation of retinal aromatic-L-amino-acid decarboxylase by α2-adrenoreceptors, J. Neurochem. 52: 647–652 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. W.P. Melega, J.M. Hoffman, A. Luxen, C.H.K. Nissenson, M.E. Phelps, and J.R. Barrio, The effects of carbidopa on the metabolism of 6-[18F]fluoro-L-dopa in rats, monkeys and humans, Life Sciences 47: 149–157 (1990).

    Article  PubMed  CAS  Google Scholar 

  13. D.W. Cheng, R.J. Boado, and J.R. Barrio, Carbidopa inhibition of aromatic L-amino acid decarboxylase in rat brain capillaries, Faseb J. 6: A1589 (1992).

    Google Scholar 

  14. W.P. Melega, J.M. Hoffman, J.S. Schneider, M.E. Phelps, and J.R. Barrio, 6-[18F]fluoro-L-DOPA metabolism in MPTP-treated monkeys: Assessment of tracer methodologies for positron emission tomography, Brain Res. 543: 271–276 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. S.C. Huang, D.C. Yu, J.R. Barrio, S.C. Grafton, W.P. Melega, J.M. Hoffman, N. Satyamurthy, J.C. Mazziotta, and M.E. Phelps, Kinetics and modeling of L-6-[18F]fluoro-DOPA in human positron emission tomographic studies, J. Cereb Blood Flow Metab. 11: 898–913 (1991).

    Article  PubMed  CAS  Google Scholar 

  16. A. Gjedde, J. Reith, S. Dyve, G. Leger, M. Guttman, M. Diksic, A. Evans, and H. Kuwabara, Dopa decarboxylase activity of the living human brain, Proc Nat Acad Sci. (USA) 88: 2721–2725 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. M. Namavari, A. Bishop, N. Satyamurthy, G. Bida, and J.R. Barrio, Regioselective radiofluorodestannylation with [18F]F2, and [18F]CH3COOF: A high yield synthesis of 6-[18F]Fluoro-L-dopa, Appl Rad Isot. 43: 989–996 (1992).

    Article  CAS  Google Scholar 

  18. W.P. Melega, M.M. Perlmutter, A. Luxen, C.H.K. Nissenson, S.T. Grafton, S.C. Huang, M.E. Phelps, and J.R. Barrio, 4-[18F]Fluoro-L-m-tyrosine: An L-3,4-dihydroxyphenylalanine analog for probing presynaptic dopaminergic function with positron emission tomography, 7. Neurochem. 53: 311–314 (1989).

    Article  CAS  Google Scholar 

  19. J.R. Barrio, W.P. Melega, J. Quintana, N. Satyamurthy, D.C. Yu, M. Namavari, S. Cherry, S.C. Huang, and M.E. Phelps, Comparative kinetic and biochemical behavior of 6-[18F]fluoro-,4[18F]fluoro-L-metatyrosines and 6-[18F]fluoro-L-dopa, 26th International Symposium on Cerebral Blood Flow and Metabolism, Sendai, Japan, May 22–28, 1993.

    Google Scholar 

  20. M. Namavari, G. Lacan, N. Satyamurthy, and J.R. Barrio, Efficient syntheses of radiofluorinated analogs of L-DOPA via regioselective radiofluorodestannylation, American Chemical Society National Meeting, Washington, D.C., August, 1992.

    Google Scholar 

  21. I.A. McDonald, J.M. Lacoste, P. Bey, J. Wagner, M. Zreika, and M.A. Palfreyman, Dual enzyme-activated irreversible inhibition of monoamine oxidase, Bioorganic Chem. 14: 103–118(1986).

    Article  CAS  Google Scholar 

  22. O.T. De Jesus, J.E. Holden, C. Endres, D. Murali, T.R. Oakes, S. Shelton, H. Uno, D. Houser, L. Freund, S.B. Perlman, and R.J. Nickles, Visualization of dopamine nerve terminals by positron tomography using [18F]fluoro-β-fluoromethylene-m-tyrosine, Brain Res. 597: 151–154 (1992).

    Article  Google Scholar 

  23. J.R. Barrio, G. Lacan, N. Satyamurthy, D.C. Yu, S.C. Huang, and M.E. Phelps, L-[E]-β-fluoromethylene-6-[F-18]fluoro-m-tyrosine: A specific central dopamine probe, J. Nucl Med. 34: 202P (1993).

    Google Scholar 

  24. R.J. Nickles, M.E. Daube, and T.J. Ruth, An 18O2 target for the production of [18F]F2, Int J. Appl Radiat Isot. 35: 117–122 (1984).

    Article  CAS  Google Scholar 

  25. G.T. Bida, G.O. Hendry, A.J. Bishop, and N. Satyamurthy, [Fluorine-18]F2 production via low energy proton irradiation of [oxygen-18]O2 plus F2, Proceedings of the IVth International Workshop on Targetry and Target Chemistry, Villigen, Switzerland, August, 1992.

    Google Scholar 

  26. Namavari M, Satyamurthy N, Barrio JR: Synthesis of 6-[18F]- and 4-[18F]Fluoro-L-m-tyrosines via Regioselective Radiofluorodestannylation, Appl Rad Isot. 44: 527–536, (1993).

    Article  CAS  Google Scholar 

  27. A. Luxen, J.R. Barrio, G.T. Bida, and N. Satyamurthy, Regioselective radiofluorination: A simple, high yield synthesis of 6-[F-18]fluorodopa, J. Labeled Compd Radiopharm. 23: 1066–1067 (1986).

    Google Scholar 

  28. A. Luxen, M. Perlmutter, G.T. Bida, G. Van Moffaert, J.S. Cook, N. Satyamurthy, M.E. Phelps, and J.R. Barrio, Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET, Appl Radiat Isot. 41: 275–281 (1990).

    Article  CAS  Google Scholar 

  29. R. Chirakal, G. Firnau, and E.S. Garnett, High yield synthesis of 6-[18F]fluoro-L-dopa, J. Nucl Med. 27: 417–421 (1986).

    PubMed  CAS  Google Scholar 

  30. G. Firnau, R. Chirakal, E.S. Garnett, Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-dopa, J. Nucl Med. 25: 1228–1233 (1984).

    PubMed  CAS  Google Scholar 

  31. M.J. Adam, J.R. Grierson, T.J. Ruth, and S. Jivan, Reaction of [18F]acetyl hypofluorite with derivatives of dihydroxyphenylalanine: Synthesis of L-[18F]6-fluorodopa, Appl Radiat Isot. 37: 877–882 (1986a).

    Article  CAS  Google Scholar 

  32. M.J. Adam, T.J. Ruth, J.R. Grierson, B. Abeysekera, and B.D. Pate, Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypofluorite, J. Nucl Med. 27: 1462–1466 (1986b).

    PubMed  CAS  Google Scholar 

  33. O.T. De Jesus, J.J. Sunderland, R.J. Nickles, J. Mukherjee, and E.H. Appelman, Synthesis of radiofluorinated analogs of m-tyrosine as potential L-dopa tracers via direct reaction with acetyl hypofluorite, Appl Radiat Isot. 41: 433–437 (1990).

    Article  Google Scholar 

  34. R. Chirakal, G.J. Schrobilgen, G. Firnau, and S. Garnett, Synthesis of 18F labelled fluoro-m-tyrosine, fluoro-m-tyramine and fluoro-3-hydroxyphenylacetic acid, Appl Radiat Isot. 42: 113–119 (1991).

    Article  CAS  Google Scholar 

  35. M.M. Perlmutter, N. Satyamurthy, A. Luxen, M.E. Phelps, and J.R. Barrio, Synthesis of 4-[18F]fluoro-L-m-tyrosine: A model analog for in-vivo assessment of central dopaminergic function, Appl Radiat Isot. 41: 801–807 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barrio, J.R., Satyamurthy, N., Namavari, M., Lacan, G. (1995). Radiofluorinated Enzyme Probes of Dopaminergic Function. In: Emran, A.M. (eds) Chemists’ Views of Imaging Centers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9670-4_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9670-4_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9672-8

  • Online ISBN: 978-1-4757-9670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics