Chemistry, Radiochemistry and Applications of Potassium Isotopes

  • Ali M. Emran


Potassium (K) is a principal cation in the intracellular fluid and an important constituent of the extracellular fluid. It influences a number of physiological processes; specifically muscle activity (ie. cardiac muscle) by affecting the cellular resting potential and the cell excitability (1,2). All cellular activities involving electrical phenomena such as skeletal or cardiac muscle contraction and nerve impulse conduction are dependant on the gradients of K+ and Na+ across the cellular membrane (3). It affects the acid-balance and maintains cellular pH by interaction with H+, Na+, Ca++ ions via ion exchange mechanisms (4,5).


Positron Emission Tomography Myocardial Perfusion Spinal Cord Stimulation Regional Myocardial Perfusion Potassium Perchlorate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Boyle and E.J. Conway, Potassium accumulation in muscle and associated changes, J. Physiol. 100: 1 (1941).PubMedGoogle Scholar
  2. 2.
    E.J. Conway, Nature and significance of concentration relations of potassium and sodium ions in skeletal muscle, Physiol. Rev. 37:84 (1957).PubMedGoogle Scholar
  3. 3.
    I.S. Edelman and J. Leibman, Anatomy of body water and electrolytes, Amer. J. Med. 27:256 (1959).PubMedCrossRefGoogle Scholar
  4. 4.
    H.D. Davenport, The ABC of acid-base chemistry, 4th. Edn., University of Chicago Press, (1958).Google Scholar
  5. 5.
    R.F. Pitts, Physiology of the kidney and body fluids, Year Book Medical Publishers, Inc., (1968).Google Scholar
  6. 6.
    J.F. Gennars, Jr., W.L. Nastuk and D.T. Rutherford, Reversible depletion of synaptic vesicles induced by application of high external K+ to the frog neuromuscular junction, Japan J. Physiol. 280:237 (1978).Google Scholar
  7. 7.
    A.S.V. Burgen and K.G. Terroux, On the negative inotropic effect in the cat’s auricle, J. Physiol., 119:449 (1953).Google Scholar
  8. 8.
    O.F. Hutter, Mode of action of autonomic transmitters on the heart, Br. Med. Bull. 13:176 (1957).PubMedGoogle Scholar
  9. 9.
    A.M. Emran, Radioisotopes of potassium: The current and future perspectives, Proceedings of the 206th. National Meeting of the American Chemical Society, Chicago, Illinois, August 1993.Google Scholar
  10. 10.
    E.H. Archibald, W.G. Wilcox and B.G. Buckley, A study of the solubility of potassium chloroplatinate, J. A.M. Chem. Soc. 30:747 (1908).CrossRefGoogle Scholar
  11. 11.
    B. Brauner. Collection Czechoslov. Chem. Communs. 2:442 (1930).Google Scholar
  12. 12.
    W.J. O’Leary and J. Papish, Ind. Eng. Chem., Anal Ed. 6:107 (1934).CrossRefGoogle Scholar
  13. 13.
    M.F. Adams and J.L.S. John, Colorimetric determination of potassium, Ind. Eng. Chem., Anal. Ed. 17:435 (1945).CrossRefGoogle Scholar
  14. 14.
    H.H. Willard and G.F. Smith, The separation and determination of sodium and lithium by precipitation from alcoholic Perchlorate solution, J. A.M. Chem. Soc. 44:2816 (1922).CrossRefGoogle Scholar
  15. 15.
    G.F. Smith. The separation and determination of potassium and sodium. A Perchlorate precipitation process using normal butyl alcohol, J. A.M. Chem. Soc. 45:2072 (1923).CrossRefGoogle Scholar
  16. 16.
    G.F. Smith, The separation and determination of the alkali metals using perchloric acid. I. The solubilities of the Perchlorates of the metals in mixed organic solvents, J. A.M. Chem. Soc. 47:762 (1925).CrossRefGoogle Scholar
  17. 17.
    G.F. Smith and J.F. Ross, The separation and determination of alkali metals using perchloric acid. III. Normal butyl alcohol and ethyl acetate as mixed solvents in the separation and determination of potassium, sodium and lithium, J. A.M. Chem. Soc. 47:1020 (1925).CrossRefGoogle Scholar
  18. 18.
    G. Lejeune, Une methode rapide de dosage du potassium dans les engrais, Compt. rend. 227:434 (1948).Google Scholar
  19. 19.
    J.A. Dean, Modified Method for potassium, Anal. Chem. 23:202 (1951).CrossRefGoogle Scholar
  20. 20.
    W.E. Cohn and H.W. Kohn, Ion exchange separation of alkali metals, J. A.M. Chem. Soc. 70:1986 (1948).CrossRefGoogle Scholar
  21. 21.
    J. Beukenkamp and W. Rieman, III, Determination of sodium and potassium, employing ion-exchange separation, Anal. Chem., 22:582 (1950).CrossRefGoogle Scholar
  22. 22.
    Alltech Technical Bulletin #182.Google Scholar
  23. 23.
    Table of Isotopes, C.M. Lederer and V.S. Shirley, Eds., J. Wiley & Sons, Inc., New York, (1978).Google Scholar
  24. 24.
    J.W. Raker, I.M. Taylor, J.M. Weiler and A.B. Hastings, Rate of potassium exchange of the human erythrocytes, J. Gen. Physiol. 33:705 (1950).CrossRefGoogle Scholar
  25. 25.
    P.J. Hurley, M. Cooper, R.C. Reba, K.J. Poggenburg and H.N. Wagner, Jr., 43K: A new radiopharmaceutical for imaging the heart, J. Nucl. Med. 12:516 (1971).PubMedGoogle Scholar
  26. 26.
    M.E. Daube and R.J. Nickles, Development of myocardial perfusion tracers for positron emission tomography, Int. J. Nucl. Med. Biol. 12:303 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Guillaume, C. D. Landsheere, P. Rigo and R. Czichosz, Automated production of potassium-38 for the study of myocardial perfusion using positron emission tomography, Appl. Radiat. Isot. 39:97 (1988).CrossRefGoogle Scholar
  28. 28.
    R.S. Tilbury, W.G. Myers, R. Chandra, J.R. Dahl and R. Lee, Production of 7.6-minute potassium-38 for medical use, J. Nucl. Med. 21:867 (1980).PubMedGoogle Scholar
  29. 29.
    D.G. Hurst and H. Walke, The induced radioactivity of potassium, Phys. Rev. 51:1033 (1937).CrossRefGoogle Scholar
  30. 30.
    R.M. Lambrecht, T. Hara, B.M. Gallagher, A.P. Wolf, A. Ansari and H. Atkins, Cyclotron isotopes and radiopharmaceuticals-XXVIII. Production of potassium-38 for myocardial perfusion studies, Int. J. Appl. Radiat. Isot. 29:667 (1978).PubMedCrossRefGoogle Scholar
  31. 31.
    W.G. Myers, Radiopotassium-38 for in vivo studies of dynamic process, J. Nucl. Med. 14:359 (1973).PubMedGoogle Scholar
  32. 32.
    W.G. Myers, R.E. Bigler and M.C. Graham, Studies on the distribution of potassium-38 in vivo by means of positron-electron transmutation (PET) tomography, Int. J. Radiat. Oncol. Biol Phys., 5(suppl. 2):72 (1979).Google Scholar
  33. 33.
    M.E. Daube and R.J. Nickles, Development of myocardial perfusion tracers for positron emission tomography, Int. J. Nucl. Med. Biol., 12:303 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    K.J. Kearfott, Radiation absorbed dose estimates for positron emission tomography (PET): K-38, Rb-81, Rb-82 and Cs-130, J. Nucl. Med., 23:1128 (1982).PubMedGoogle Scholar
  35. 35.
    C. DeLandsheere, C. Mannheimer, A. Habets, M. Guillaume, I. Bourgeois, L.-E. Augustinsson, T. Eliasson, D. Lamotte, H. Kulbertus and P. Rigo, Effect of spinal cord stimulation on regional myocardial perfusion assessed by positron emission tomography, A.M, J. Cardiol 69:1143 (1992).CrossRefGoogle Scholar
  36. 36.
    B. Silverstone, W.H. Sweet and Richard J. Ireton, Radioactive potassium, a new isotope for brain tumor localization, Proceedings of the Forum Sessions, 36th. Clinical Congress of the American College of Surgeon, Boston, MA, Oct. 1950 Surgical Forum, 1:371 (1951).Google Scholar
  37. 37.
    N.D. Martin, B.L. Zaret, H.W. Strauss et. al., Myocardial imaging using 43K and the gamma camera, Radiology 112:446 (1974).PubMedGoogle Scholar
  38. 38.
    P.A. Feller and V.J. Sodd, Dosimetry of four heart imaging radionuclides: 43K, 81Rb, 129Cs and 201T1, J. Nucl. Med. 16:1070 (1975).PubMedGoogle Scholar
  39. 39.
    W.T. Mullins and G.W. Leddicotte, The radiochemistry of potassium, Nuclear Science Series, National Research Council, Publication # NAS-NS 3048, (1961).Google Scholar
  40. 40.
    M.E. Daube, Development and comparison of myocardial tracers for positron emission tomography, Ph.D. Thesis, The University of Wisconsin, Medicad Physics, Publication # WMP-169, (1983).Google Scholar
  41. 41.
    R.J. Dahl, Personal communications (1993).Google Scholar
  42. 42.
    A.M. Emran, Work in progress, (1994).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Ali M. Emran
    • 1
  1. 1.Positron Diagnostic and Research CenterThe University of Texas Health Science CenterHoustonUSA

Personalised recommendations