Development of Fluorine-18 Radiopharmaceuticals for Dopamine Neuroreceptors

  • Jogeshwar Mukherjee
  • Zhi-Ying Yang
  • Malay K. Das


Fluorine-18 offers good radionuclide characteristics for incorporation into positron radiopharmaceuticals. Development of fluorine-18 radiopharmaceuticals for neuroreceptor imaging by positron emission tomography (PET) is a challenge that most of us in the PET community have encountered. The magnitude of the problem is due to the multidisciplinary nature of issues that a radiochemist faces, such as drug design, organic syntheses, in vitro pharmacology, radiolabeling methods, in vivo pharmacology, in vivo stability and radiotracer modeling methods in order to achieve the successful application of a radiopharmaceutical in meaningful human studies. The radiochemist is therefore forced to anticipate and take into account in the design process the potential hurdles that might be encountered upon arrival at each step. Fluorine is becoming a more common element that is incorporated into biologically interesting molecules within the pharmaceutical industry. When such fluorinated lead compounds from the pharmaceutical industry are available, development of a fluorine-18 radiopharmaceutical is somewhat simplified, and then largely depends upon radiolabeling methods, in vivo pharmacology, in vivo stability and radiotracer modeling methods. However, there remain a large number of potentially useful pharmaceuticals which are of interest to PET researchers that do not possess a fluorine atom. Therefore as a question of investment versus outcome should researchers, particularly radiochemists in the PET community, embark on new drug development rather than use only what is available from the pharmaceutical industry.


Positron Emission Tomography Dopamine Receptor Positron Emission Tomography Study Receptor Site Fluorine Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amlaiky, N., Berger, J.G., Chang, W., McQuade, R.J., and Caron, M.G., 1987, Identification of the binding subunit of the D-1-dopamine receptor by photoaffinity crosslinking, Mol. Pharmacol. 31:129.PubMedGoogle Scholar
  2. Banks, W.R., Moerlein, S.M., Parkinson, D., and Welch M.J., 1991, 6–0-[F-18]Fluoroalkylated analogs of raclopride:Potential radiopharmaceuticals for mapping cerebral D-2 receptors with PET, J. Nucl. Med. 32:1096.Google Scholar
  3. Biggs, A.I., and Robinson, R.A., 1961, The ionisation of some substituted anilines and phenols: A test of the Hammett relation. J. Chem. Soc. 388.Google Scholar
  4. O’Boyle, K.M., and Waddington, J.L., 1987, [3H]SCH 23390 binding to human putamen D-1 dopamine receptors: Stereochemical and structure-affinity relationships among 1 phenyl-1H-3-benzazepine derivatives as a guide to D-l receptor topography. J. Neurochem. 48:1039.PubMedCrossRefGoogle Scholar
  5. Chipkin, R.E., lorio, L.C., Coffin, V.L., McQuade, R.D., Berger, J.G., and Barnett, A., 1988, Pharmacological profile of SCH 39166: A dopamine D-l selective benzonaphthazepine with potential antipsychotic activity. J. Pharm. Expt. Therap. 247:1093.Google Scholar
  6. Chumpradit, S., Kung, M.P., Billings, J., Mach, R., and Kung, H.R, 1993, Fluorinated and iodinated dopamine agents: D2 imaging agents for PET and SPECT. J. Med. Chem. 36:221.PubMedCrossRefGoogle Scholar
  7. Chumpradit, S., Kung, M.P., and Kung, H.F., 1991, New derivatives of SCH-23390 as CNS D-l dopamine receptor ligands. J. label. Compd. Radiopharm. 30:347.CrossRefGoogle Scholar
  8. Eckelman, W.C., 1991, The status of radiopharmaceutical research. Nucl. Med. Biol. 18:iii.Google Scholar
  9. Halldin, C., Hogberg, T., Bengtsson, S., Hall, H., and Farde, L., 1990, Synthesis of [18F]NCQ 115, A new selective reversible D-2 dopamine receptor ligand for PET. J. Label. Compds. Radiopharm., 30: 355.Google Scholar
  10. Halldin, C., Farde, L., Barnett, A., and Sedvall, G., 1991, Preparation of [C-11]SCH 39166, a new selective D-l dopamine receptor ligand for PET. J. Nucl. Med. 31:737.Google Scholar
  11. Harrold, M.W., Wallace, R.A., Farooqi, T., Wallace, L.J., Uretsky, N., and Miller, D.D., 1989, Synthesis and D-2 dopaminergic activity of pyrrolidinium, tetrahydrothiophenium, and tetrahydrothiophene analogues of sulpiride. J. Med. Chem. 32:874.PubMedCrossRefGoogle Scholar
  12. Hatano, K., Ido, T., Ishiwata, K., and Iwata, R., 1990, Syntheses of o- and p-[18F]fluorobenzyl bromide and their application to preparation of F-18 labeled neuroleptics. J. Label. Compds. Radiopharm. 30:137.Google Scholar
  13. Hogberg, T., Strom, P., Hall, H., and Ogren, S.O., 1990, Potential antipsychotic agents. Part 8. Antidopaminergic properties of a potent series of 5-substituted (-)-(S)-N-[(1-ethylpyrrolidin-2-yl)methy1]-2,3-dimethoxybenzamides. Synthesis via common lithio intermediates. Helv. Chim. Acta., 73:417.CrossRefGoogle Scholar
  14. Kaiser, C., and Jain, T., 1985, Dopamine receptors: Functions, subtypes and emerging concepts. Medicinal Res. Rev. 5:145.CrossRefGoogle Scholar
  15. Kessler, R.M., dePaulis, T., Votaw, J.R., Ansari, M.S., Schmidt, D., Holburn, G., Bingham, D., Mason, N.S., Cashion, D., and Manning R.G., 1991a, In vitro, primate and human studies of [18F]fluoropropylepidepride, a potent ligand for the dopamine D-2 receptor. J. Nucl. Med., 32: 1070.Google Scholar
  16. Kessler, R.M., dePaulis, T., Votaw, J.R., Ansari, M.S., Schmidt, D., Holburn, G., Bingham, D., Mason, N.S., Cashion, D., and Manning R.G., 1991a, In vitro, primate and human studies of [18F]fluoropropylepidepride, a potent ligand for the dopamine D-2 receptor. J. Nucl. Med., 32: 1070.Google Scholar
  17. Kiesewetter, D.O., Kawai, R., Chelliah, M., Owens, E., Mclellan, C., and Blasberg, R.G., 1990, Preparation and biological evaluation of [F-18]labeled benzamide analogs as potential dopamine D-2 receptor ligands. Nucl. Med. Biol, 17:347.Google Scholar
  18. Kilbourn, M.R., 1992, Shades of Grey: Radiopharmaceutical chemistry in the 1990s and beyond. Nucl. Med. Biol 19:603.Google Scholar
  19. Kilpatrick, G.J., El Tayer, N., Van De Waterbeemd, H., Jenner, P., Testa, B., and Marsden, C.D., 1986, The thermodynamics of agonist and antagonist binding to dopamine D-2 receptors. Molec. Pharmacol. 30:226.Google Scholar
  20. Lannoye, G.S., Moerlein, S.M., Parkinson, D., and Welch, M.J., 1990, N-fluoroalkylated and N-alkylated analogues of the dopaminergic D-2 receptor antagonist raclopride. J. Med. Chem., 33:2430.PubMedCrossRefGoogle Scholar
  21. Livingstone, C.D., Strange, P.G., and Naylor, L.H., 1992, Molecular modeling of D-2 like dopamine receptors. Biochem. J. 287:277.PubMedGoogle Scholar
  22. Love, P., Cohen, R.B., and Taft, R.W., 1968, Polar substituent effects in gas-phase lewis acid-base equilibria. I. Intrinsic basicity of amines. J. Amer. Chem. Soc. 90:2455.CrossRefGoogle Scholar
  23. Mach, R.H., Nowak, P.A., Evora, P.H., and Ehrenkaufer, R.L., 1992a, Synthesis and in vivo evaluation of [F-18]fluorobenzylthio SCH 23390 (BT-SCH): A potential dopamine D-l ligand for PET, J. Nucl. Med. 33:829.Google Scholar
  24. Mach, R.H., Nowak, P.A., Luedtke, R.R., Elder, ST., Jackson, J.R., Hoffman, P.A., Evora, P.H., Molinoff, P.B., Scripko, J.G., and Ehrenkaufer, R.L., 1992b, Structurally modified analogs of clebopride and BRL 34778 as potential [18F]labeled ligands for PET studies of the dopamine D-2 receptor. IX th International Symposium on Radiopharmaceutical Chemistry, pp 262–264.Google Scholar
  25. Maeda, M., Sasaki, S., Fukumura, T., Fukuzawa, E., Watanabe, K., Kojima, M., Tahara, T., Masuda, K., and Ichiya, Y., 1992, Positron-emitting N-[18F]fluoroalkyl and [18]fluoropyrrolidinyl analogues of eticlopride as potential in vivo radioligands for dopamine D-2 receptors. Chem. Pharm. Bull. 40: 1793–1798.PubMedCrossRefGoogle Scholar
  26. Mansour, A., Meng, F., Meador-Woodruff, J.H., Taylor, L.P., Civelli, O., and Akil, H., 1992, Site-directed mutagenesis of the human dopamine D-2 receptor. Eur. J. Pharmacol. 227:205.PubMedCrossRefGoogle Scholar
  27. Mathis, C.A., Bishop, J.E., Gerdes, J.M., Whitney, J.M., Brennan, K.M. and Jagust, W.J., 1992 Synthesis and evaluation of high affinity, aryl-substituted [18F]fluoropropylbenzamides for dopamine D-2 receptor studies. Nucl. Med. Biology, 19:571.Google Scholar
  28. Moerlein, S.M., Lannoye, G.S., and Welch, M J., (1989) No carrier added synthesis of N-[F-18]fluoroethyl SCH 23390: A potential agent for mapping cerebral dopamine D-l receptors. J. Nucl. Med. 30: 931.Google Scholar
  29. Murakami, S., Marubayashi, N., Fujuda, T., Takehara, S., and Tahara, T., 1991, Antidopaminergic effects of the stereoisomers of N-[(l-alkyl-2-pyrrolidinyl)methyl]-5-sulfamoylbenzamides and 2,3- dihydrobenzofuran-7-carboxamides. J. Med. Chem., 34:261.PubMedCrossRefGoogle Scholar
  30. Mukherjee, J., 1991, Fluorinated benzamide neuroleptics 2. Synthesis and Radiosynthesis of (S)-N-[(l-ethyl- 2-pyrrolidinyl)methyl]-5-(3[18F]-fluoropropyl)-3-substituted-2-methoxy-benzamide. Int J Appl Radiat Isotopes, 42:713.CrossRefGoogle Scholar
  31. Mukherjee, J., Luh, K.E., Yasillo, N., Perry, B.D., Levy, D., Chen, C-T., Ortega, C., Beck, R.N., and Cooper, M., 1990a, Dopamine D-2 receptors imaged by PET in Cebus apella using [18F]benzamide neuroleptic. Eur. J.Pharmacol., 175:363.PubMedCrossRefGoogle Scholar
  32. Mukherjee, J., Perry, B.D., and Cooper, M., 1990b, Fluorinated benzamide neuroleptics 1. Radiosynthesis of (S)-N-[(l-ethyl-2-pyrrolidinyl)methyl]-5-(2[F-18]-fluoroethyl)-2-methoxybenzamide: A potential fluorine-18 labeled PET radiotracer for dopamine D-2 receptors. J Label Compounds Radiopharm. 28:609.CrossRefGoogle Scholar
  33. Mukherjee, J., Yang, Z.Y., and Cooper, M., 1992a, Synthesis, pharmacological and lipophilicity studies of improved analogs of the D-2 receptor PET tracer, [F-18JFPMB. Ann. Univ. Turkuensis, 88:A59.Google Scholar
  34. Mukherjee, J., Yang, Z.Y., Perry, B.D., and Cooper, M., 1992b, High affinity and selective [F- 18]fluorinated derivatives of SCH 38548 as potential PET radiotracers for dopamine D-l receptors, J. Nucl. Med. 33:829.Google Scholar
  35. Mukherjee, J., Yang, Z.Y., and Perry, B.D., 1993, Dopamine D-l receptors imaged in vivo using N-(F-18 fluoropropyl)SCH 38548 by PET. Eur. J. Pharmacol, (submitted).Google Scholar
  36. Neumeyer, J.L., Baindur, N., Yuan, J., Booth, G., Seeman, P. and Niznik, H.B., 1990, Development of a high affinity and stereoselective photoafUnity label for the D-l dopamine receptor: synthesis and resolution. J. Med. Chem. 33:521.PubMedCrossRefGoogle Scholar
  37. de Paulis, T., Janowsky, A., Kessler, R.M., Clanton, J.A., and Smith, H.E., 1988, (S)-N-[(1-ethyl-2 pyrrolidinyl)methyl]-5-[I-125]iodo-2-methoxybenzamide hydrochloride, a new selective radioligand for dopamine D-2 receptors. J. Med. Chem. 31:2027.PubMedCrossRefGoogle Scholar
  38. de Paulis, T., Kumar, Y., Johansson, L., Ramsby, S., Florvall, L., Hall, H., Angeby-Moller, K., and Ogren, S-O., 1985, Potential neuroleptic agents. 3. Chemistry and antidopaminergic properties of substituted 6-methoxysalicylamides. J. Med. Chem., 28:1263.PubMedCrossRefGoogle Scholar
  39. de Paulis, T., Bingham, D.R., Manning, R.G., Scott Mason, N., Sib Ansari, M., Schimdt, D.E. and Kessler, R.M. 1991, in: New trends in radiopharmaceutical synthesis, quality assurance, and regulatory control, ed. Emran, A.M. (Plenum press, New York) pp 97–107.Google Scholar
  40. Rognan, D., Sokoloff, P., Mann, A., Martres, M.-P., Schwartz, J.-C., Costentin, J., Wermuth, C-G., 1990, Optically active benzamides as predictive tools for mapping the dopaminergic D-2 receptor. Eur. J. Pharmacol, 189:59.PubMedCrossRefGoogle Scholar
  41. Teng, R-R., Bai, L-Q., Shiue, C-Y., Dewey, S.L., Arnett, C.D., Wolf, A.P. and Hitzemann, R.J., 1990, The utility of l-[F-18]fluoro-3-iodopropane for the synthesis of certain dopamine and benzodiazepine receptor radioligands. Nucl. Med. Biol. 17:811.Google Scholar
  42. Wallace, R.A., Farooqi, T., Wallace, L., Ares, J., Chang, Y.A., Miller, D. and Uretsky, N., 1987, Interaction of permanently charged analogs of dopamine with the D-2 dopaminergic receptor. Biochem. Pharmacol. 36:3903.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Jogeshwar Mukherjee
    • 1
  • Zhi-Ying Yang
    • 1
  • Malay K. Das
    • 1
  1. 1.Franklin McLean Institute Department of RadiologyUniversity of ChicagoChicagoUSA

Personalised recommendations