Advertisement

Trend Analysis of Quality Control Data

  • H. R. Adams
  • M. A. Channing
  • J. E. Divel
  • B. B. Dunn
  • D. O. Kiesewetter
  • P. Plascjak
  • S. L. Regdos
  • N. R. Simpson
  • W. C. Eckelman

Abstract

The NIH PET Department is organized as a technical core concentrating on radiochemistry. There are extensive resources available, including two medical cyclotrons (a Cyclotron Corporation CS-30 and a Japan Steel Works, JSW 1710), radiochemistry laboratories equipped with six hot cells, three PET tomographs (Scanditronix PC-1024 and PC-2048 and a Posicam 6.5), and computer hardware and software for the generation and analysis of physiological images.

Keywords

Radiochemical Yield Radionuclidic Purity Usable Yield Direct Fluorination Foil Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plascjak PS, Meyer, Jr. WC and Mock BH. Automated H2 15O synthesis and injection for PET blood flow studies. In preparation.Google Scholar
  2. 2.
    Channing M, Eckelman WC., Bennett JM, Burke.Jr TR and Rice KC. Radiosynthesis of [18F] 3-acetylcyclofoxy: A high affinity opiate antagonist. Int. J Appl Radiat Isot 36, 429–433, 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Tewson TJ. Synthesis of no-carrier-added Fluorine-18 2-Fluoro-2-Deoxy-D-Glucose. J Nucl Med 24, 718–721, 1983.PubMedGoogle Scholar
  4. 4.
    Dunn BB, Bennett J, Channing M, Kiesewetter DO, and Finn R:. Comparative evaluation of synthetic routes to 2-fluoro-{18F]-2-deoxy-D-glucose. J Label Compd Radiopharm 23, 1094, 1986.Google Scholar
  5. 5.
    Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of NCA 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27, 235–238, 1986.PubMedGoogle Scholar
  6. 6.
    Alexoff D.L., Casati R., Fowler JS, Wolf AP, Shea C., Schlyer DJ and Shiue C-Y. Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose. Appl Radiat Isot 43, 1313, 1992.CrossRefGoogle Scholar
  7. 7.
    Burke, Jr. TR, Rice KC and Pert CB. Probes for narcotic receptor mediated phenomena. 11. Synthesis of 17-methyl- and 17-cyclopropylmethyl-3, 14-dihydroxy-4, 5-epoxy-6 beta-fluoromorphinans (foxy and cyclofoxy) as model opioid ligands suitable for positron emission transaxial tomography. Heterocycles 23, 99, 1985.CrossRefGoogle Scholar
  8. 8.
    Channing MA, Eckelman WC., Bennett JM, Burke, Jr TR and Rice KC. Radiosynthesis of [18F] 3-acetylcyclofoxy: A high affinity opiate antagonist. Int. J. Api. Radiat Isot. 36, 429–433, 1985.CrossRefGoogle Scholar
  9. 9.
    Dunn BB, Channing MA, Regdos S, Kiesewetter DO. Issues concerning quality control of five routinely used PET imaging compounds, fourth European Symposium on Radiopharmacy and Radiopharmaceuticals. Zurich, Switzerland, May, 1991.Google Scholar
  10. 10.
    Ostowski NL, Burke, Jr TR, Rice RC., Pert A, Pert CB: The pattern of [3H] cyclofoxy retention in rat brain after in vivo injection corresponds to the in vitro opiate receptor distribution. Brain Res 402, 275–286, 1987.CrossRefGoogle Scholar
  11. 11.
    Pert CB, Danks JA, Channing MA, Eckelman WC., Larson SM, Bennett JM, Burke TR Jr, Rice KC. 3-[18F] Acetyl-cyclofoxy: A useful probe for the visualization of opiate receptors in living animals. FEBS Lett 177, 281–286, 1984.PubMedCrossRefGoogle Scholar
  12. 12.
    Carson R, Channing MA, Blasberg RG, Dunn BB, Cohen RM, Rice KC., Herscovitch P. Comparison of bolus and infusion methods for receptor quantitation: application to [18F] cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab 13, 24–42, 1993.PubMedCrossRefGoogle Scholar
  13. 13.
    Luxen A, Guillaume M, Melega WP, Pike VW, Solin O, Wagner R. Production of 6-[18F]Fluoro-L-DOPA and its metabolism in vivo- a critical review. Nucl Med Biol 19, 149–158, 1992.Google Scholar
  14. 14.
    Adams HR, Channing MA, Eckelman WC. Some things to consider when preparing 6-[18F] FDOPA by radiofluorodemercuration. J Label Compds Radiopharm 32, 279–281, 1993.Google Scholar
  15. 15.
    Casella V, Ido T, Wolf AP, Fowler JS, MacGregor RR, Ruth TJ. Anhydrous F-18 labeled elemental fluorine for radiopharmaceutical preparation. J Nucl Med 21, 750–757, 1980.PubMedGoogle Scholar
  16. 16.
    United States Pharmacopeia, XXII Edition, Fifth Supplement.p. 2616.Google Scholar
  17. 17.
    Adam MJ and Jinan S: Synthesis and purification of L-6-[18F] fluorodopa. Appl Radiat Isot 39, 1203–1206, 1988.CrossRefGoogle Scholar
  18. 18.
    Luxen A, Guilliaume M, Melega WP, Pike VW, Solin O and Wagner R: Production of 6-[18F]Fluoro-L-DOPA and its metabolism in vivo-a critical review. (1992) Nucl Med Biol 19, 149–158.Google Scholar
  19. 19.
    Luxen A, Perlmutter M, Bida GT et al.: Remote, semiautomated production of 6-[18F] fluoro-L-dopa for human studies with PET. Appl Radiat. Isot. 41:275–281, 1990.CrossRefGoogle Scholar
  20. 20.
    Luxen A, Barrio JR, Van Moffaert G, Perlmutter M, Cook JC and Phelps ME (1988) Remote, semiautomated production of 6-[18F]fluoro-L-dopafor human studies with PET. In Seventh Int. Symp. on Radiopharm Chemistry, Groningen, Netherlands, 4–8 July.Google Scholar
  21. 21.
    Dunn BB and Kiesewetter DO. Stability of 6-[18F] Fluorodopa preparations. J Nucl Med 32:894, 1991.PubMedGoogle Scholar
  22. 22.
    Goldstein DS, Grossman E, Tamrat M, Chang PC., Eisenhofer G, Bacher J, Kirk KL, Bacharach S, Kopin IJ. Positron emission imaging of cardiac sympathetic innervation and function using 18F-6-fluorodopamine: effects of chemical sympathectomy by 6-hydroxydopamine. J Hypertension 9, 417–423, 1991.CrossRefGoogle Scholar
  23. 23.
    Dunn B, Channing M, Regdos S, Kiesewetter DO: Issues concerning quality control of five routinely used PET imaging compounds. Fourth symposium on Radiopharmacy and Radiopharmceuticals. Zurich, Switzerland, May, 1992.Google Scholar
  24. 24.
    Dunn BB, Channing MA, Adams HR, Goldstein D, Kirk K, Kiesewetter D. A single column, rapid quality control procedure for 6-[18F] Fluoro-L Dopa and 6-[18F] fluorodopamine PET imaging agents. Nucl Biol Med 18, 209–213, 1991.Google Scholar
  25. 25.
    Chaly T, Dahl JR, Matacchieri R, Bandyopadhyay D, Belakhlef A, Dhawan V, Takikawa, Robeson W, Margouleff D And Eidenbergl D (1993) Synthesis of 6-[18F]fluorodopamine with a synthetic unit made up of primarily sterile disposable components and operated by a Master Slave Manipulator. Appl Radiat Isot. 44, 869–874.CrossRefGoogle Scholar
  26. 26.
    Parks NJ and Krohn KA. The synthesis of 13N labeled ammonia, dinitrogen nitrite, and nitrate using a single cyclotron target system. Int. J. Appl. Radiat. Isot. 29, 754–756 1978.CrossRefGoogle Scholar
  27. 27.
    Welch MG, Straatman MG. The reactions of recoil N-13 atoms with some organic compounds in the solid and liquid phases. Radiochim Acta 20:124. 1973.Google Scholar
  28. 28.
    Tilbury RS and Daho JR. 13N species formed by proton irradiation of water. Radiat Res. 79, 22–33, 1979.CrossRefGoogle Scholar
  29. 29.
    The total energy deposited for a 15 MeV beam is 15 E6 eV/particle times 3.6 × E-3 coulombs (1 uAh) times 6.24 E18 electron charges/coulomb = 3.49 E23 eV. If 10 mL water is the target (56 mol/L × 0.01 L = .56 mol), then each molecule of water receives, on average, 3.49 E23/[0.56 × 6.023 E23] = 1.03 eV/molecule of water. For a typical run of 30 uA for 20 minutes or 0.0336 coulombs, the dose will be 10 times as high. Tilbury and Dahl quote 0.42 eV/molecule based perhaps on the beam volume only.Google Scholar
  30. 30.
    Brinkman GA, Reactions of recoil 13N atoms. Appl Radiat Isot 42:1133–1152, 1991.CrossRefGoogle Scholar
  31. 31.
    Wieland B, Bida G, Padgett H, Hendry G, Zippi E, Kabalka G, Morelle J-L, Verbruggen R, Ghyoot M. In-target production of [13N] ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures. Appl Radiat Isot 42, 1095–1098, 1991.CrossRefGoogle Scholar
  32. 32.
    Ferrieri R, MacDonald K, Schlyer DJ and Wolf AP. Proton irradiation of dilute aqueous ethanol for in-target production of [13N] ammonia: studies on teh fate of ethanol. J. Label. Compds. Radiopharm. 32:461–463, 1993.Google Scholar
  33. 33.
    United States Pharmacopeia-NF XXII. Ammonia N13 for Injection., United States Pharmacopeia Convention, Inc. Rockville MD, 1990, p. 2367.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H. R. Adams
    • 1
  • M. A. Channing
    • 1
  • J. E. Divel
    • 1
  • B. B. Dunn
    • 1
  • D. O. Kiesewetter
    • 1
  • P. Plascjak
    • 1
  • S. L. Regdos
    • 1
  • N. R. Simpson
    • 1
  • W. C. Eckelman
    • 1
  1. 1.Positron Emission Tomography Department, Warren G Magnuson, Clinical CenterNational Institutes of HealthBethesdaUSA

Personalised recommendations