Skip to main content

The Basics of Positron Emission Tomographic (PET) Imaging

  • Chapter
Book cover Chemists’ Views of Imaging Centers
  • 165 Accesses

Abstract

Positron Emission Tomographic (PET) imaging is accomplished through the coincident detection of the 511 keV photons arising from the annihilation of positrons in material. PET imaging presents several advantages over other medical imaging techniques but also presents unique imaging challenges. PET detection efficiency is increased when compared to Single Photon Emission Computerized Tomographic (SPECT) techniques because electronic collimation of the detected photon removes the requirement for inefficient lead collimation. PET transaxial images have the best spatial and temporal resolution and quantitative accuracy of all nuclear medicine imaging modalities. Current manufacturers of PET instrumentation have optimized spatial resolution to near the limits imposed by the physics of positron flight and annihilation. Absolute quantitation is achieved using the fact that the total path length traveled by both annihilation photons is a constant regardless of the origin of the annihilation. This allows precise attenuation correction without iteration. The availability of biologically relevant tracers enables PET users to quantify in vivo physiological parameters through the application of mathematical models to static or a series of dynamic images. The desirability of absolute activity quantification and accurate parametric physiological images increases the importance of camera performance and image quality for PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair, T., Karp, P., Stein, A., Ruzena, B., Reivich, M., 1981, Computer assisted analysis of tomographic images of the brain, J. Comput. Assist Tomog.r. 5:929.

    Article  CAS  Google Scholar 

  • Atkins, M.S., Murray, D., and Harrop, R., 1991, Use of transputers in a 3-d positron emission tomograph, I.E.E.E. Trans. Medical Imaging 10:276.

    Article  CAS  Google Scholar 

  • Bacharach, S.L., Douglas, M.A., Carson, R.E., Kalkowski, P.J., Freedman, N.M.T., Perrone-Filardi, P., and Bonow, R.O., 1993, Three-dimensional registration of cardiac positron emission tomography attenuation scans, J. Nucl. Med. 34:311.

    PubMed  CAS  Google Scholar 

  • Bailey, D.L., Jones, T., Spinks, T.J., Gilardi, M.-C., and Townsend, D.W., 1991, noise equivalent count measurements in a neuro-PET scanner with retractable septa, I.E.E.E. Trans. Medical Imaging 10:256.

    Article  CAS  Google Scholar 

  • Barresi, S., Bollini, D., and Del Guerra, A., 1990, Use of a transputer system for fast 3-D image reconstruction in 3-D PET, I.E.E.E. Trans. Nucl. Sci. 37:812.

    Article  Google Scholar 

  • Barrett, H.H., Swindell, W., 1981, “Radiological Imaging: The Theory of Image Formation, Detection, and Processing, Volume 2”, Academic Press, New York.

    Google Scholar 

  • Bergström, M., Eriksson, L., Bohm, C., Blomqvist, G., and Litton, H., 1983, Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections, J. Comput Assist. Tomogr. 7:42.

    Article  PubMed  Google Scholar 

  • Bergström, M., Litton, J., Eriksson, L., Bohm, C., and Blomqvist, G., 1982, Determination of object contour from projections for attenuation correction in cranial positron emission tomography, J. Comput Assist Tomogr. 6:365.

    Article  PubMed  Google Scholar 

  • Bettinardi, V., Gilardi, M.C., Lucignani, G., Landoni, C., Rizzo, G., Striano, G., and Fazio, F., 1993, A procedure for patient repositioning and compensation for misalignment between transmission and emission data in PET heart studies, J. Nucl. Med. 34:137.

    PubMed  CAS  Google Scholar 

  • Carson, R.E., Daube-Witherspoon, M., and Green, M.V., 1988, A method for postinjection PET transmission measurements with a rotating source, J. Nucl. Med. 29:1558.

    PubMed  CAS  Google Scholar 

  • Chen, C.-T., Johnson, V.E., Wong, W.H., Hu, X., and Metz, C.E., 1990, Bayesian image reconstruction in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 37:636.

    Article  Google Scholar 

  • Chen, C.M., Lee, S.-Y., and Cho, Z.H., 1991, Parallelization of the EM algorithm for 3-D PET image reconstruction, I.E.E.E. Trans. Medical Imaging 10:513.

    Article  CAS  Google Scholar 

  • Cherry, S.R., Meikle, S.R., and Hoffman, E.J., 1993, Correction and characterization of scattered events in three-dimensional PET using scanners with retractable septa, J. Nucl. Med. 34:671.

    PubMed  CAS  Google Scholar 

  • Choi, Y., Hawkins, R.A., and Huang, S.C. et al., 1991, Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2- FDG studies, J. Nucl. Med. 32:33.

    Google Scholar 

  • Clack, R., Townsend, D., and Defrise, M., 1989, An algorithm for three-dimensional reconstruction incorporating cross-plane rays, I.E.E.E. Trans. Medical Imaging 8:32.

    Article  CAS  Google Scholar 

  • Correia, J., 1992, A bloody future for clinical PET?, J. Nucl. Med. 32:620.

    Google Scholar 

  • Dahlbom, M., and Hoffman, E.J., 1987, Problems in signal-to-noise ratio for attenuation correction in high resolution PET, I.E.E.E. Trans. Nucl. Sci. 34:288.

    Article  Google Scholar 

  • Dahlbom, M., Yu, D.-C., Cherry, S.R., Chatziioannou, A., and Hoffman, E.J., 1992, Methods for improving image quality in whole body PET scanning, I.E.E.E. Trans. Nucl. Sci. 39:1079.

    Article  CAS  Google Scholar 

  • Daube-Witherspoon, M., Carson, R.E., 1991, Unified deadtime correction model for PET, I.E.E.E. Trans. Medical Imaging 10:267.

    Article  CAS  Google Scholar 

  • Daube-Witherspoon, M., Carson, R.E., Green, M.V., 1988, Postinjection transmission attenuation measurements for PET, I.E.E.E. Trans. Nucl Sci. 35:757.

    Article  CAS  Google Scholar 

  • DiChiro, G., and Brooks, R.A., 1988, PET quantitation: a blessing and curse, J. Nucl. Med. 29:1603.

    CAS  Google Scholar 

  • Endo, M., and Iinuma, 1984, Software correction of scatter coincidence in positron CT, Euro. J. Nucl. Med. 9:391.

    Article  CAS  Google Scholar 

  • Erlandsson, K., and Strand, S.-E., 1992, A new approach to three-dimensional image reconstruction in PET, I.E.E.E. Trans. Nucl. Sci. 39:1438.

    Article  CAS  Google Scholar 

  • Eriksson, L., Holte, S., Bohm, C., Kesselberg, M., and Hovander, B., 1988, Automated blood sampling systems for positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 35:703.

    Article  Google Scholar 

  • Fox, P.T., Mintun, M.A., Raichle, M.E., Miezin, F.M., Allman, J.M., and Van Essen, D.C., 1986, Mapping of human visual cortex with positron emission tomography, Nature 332:806.

    Article  Google Scholar 

  • Fox, P.T., Mintun, M.A., Reiman, E.M., and Raichle, M.E., 1988, Enhanced detection of focal brain responses using intersubject averaging and change distribution analysis of subtracted PET images, J. Cereb. Blood Flow Metab. 8:642.

    Article  PubMed  CAS  Google Scholar 

  • Freedman, N.M.T., Bacharach, S.L., McCord, M.E., and Bonow, R.O., 1992, Spatially dependent deadtime losses in high count rate cardiac PET, J. Nucl. Med. 33:2226.

    PubMed  CAS  Google Scholar 

  • Gambhir, S.S., Schwaiger, M., and Huang, S.C. et al., 1989, Simple noninvasive quantification for measuring myocardial glucose utilization in humans employing PET and FDG, J. Nucl. Med. 30:359.

    PubMed  CAS  Google Scholar 

  • Ganti, G., Ranganath, M.V., Mullani, N.A., and Gould, K.L., 1989, A multiresolution method for attenuation correction in positron emission tomography, J. Nucl. Med. 30:880.

    Google Scholar 

  • Germano, G., Chen, B.C., Huang, S.-C., Gambhir, S.S., Hoffman, E.J., and Phelps, M.E., Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies, J. Nucl. Med. 33:613.

    Google Scholar 

  • Haber, S.F., Derenzo, S.E., and Uber, D., 1990, Application of mathematical removal of positron range blurring in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 37:1293.

    Article  CAS  Google Scholar 

  • Herman, G.T., 1980, “Image Reconstruction from Projections: The Fundamentals of Computerized Tomography”, Academic Press, New York.

    Google Scholar 

  • Herman, G.T., 1991, Performance evaluation of an iterative image reconstruction algorithm for positron emission tomography, I.E.E.E. Trans. on Medical Imaging 10:336.

    Article  CAS  Google Scholar 

  • Hicks, K., Ganti, G., Mullani, N., and Gould, K.L., 1989, Automated quantitation of three-dimensional cardiac positron emission tomography for routine clinical use, J. Nucl. Med. 30:1787.

    PubMed  CAS  Google Scholar 

  • Hoffman, E.J., and Phelps, M.E., Positron emission tomography: principles and quantitation, in: “Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart,” M. Phelps, J. Mazziotta, and H. Schelbert, eds., Raven Press, New York (1986).

    Google Scholar 

  • Hoffman, E.J., Huang, S.C., and Phelps, M.E., 1979, Quantitation in positron emission computer tomography: effects of object size, J. Comput. Assist. Tomogr. 3:299.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, E.J., Cutler, P.D., Digby, W.M., and Mazziotta, J.C., 1990, 3-D phantom to simulate cerebral blood flow and metabolic images for PET, I.E.E.E. Trans. Nucl. Sci. 3:616.

    Article  Google Scholar 

  • Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G., and Eriksson, L., 1990, Iterative image reconstruction for positron emission tomography: a study of convergence and quantitation problems, I.E.E.E. Trans. Nucl. Sci. 37:629.

    Article  Google Scholar 

  • Huang, S.-C., Hoffman, E.J., Phelps, M.E., and Kuhl, D.E., 1979, Quantitation in positron emission computed tomography: Effects of inaccurate attenuation correction, J. Comput. Assist. Tomogr. 3:804.

    PubMed  CAS  Google Scholar 

  • Huang, S.-C., Carson, R.E., Phelps, M.E., Hoffman, E.J., Schelbert, H.R., and Kuhl, D.E., 1981, A boundary method for attenuation correction in positron computed tomography, J. Nucl. Med. 22:627.

    PubMed  CAS  Google Scholar 

  • Huang, S.-C., and Yu, D.-C., 1992, Capability evaluation of a sinogram error detection and correction method in computed tomography, I.E.E.E. Trans. Nucl. Sci. 39:1106.

    Article  CAS  Google Scholar 

  • Huesman, R.H., Derenzo, S.E., and Cahoon, J.L., 1988, Orbiting transmission source for positron tomography, I.E.E.E. Trans. Nucl. Sci. 35:735.

    Article  CAS  Google Scholar 

  • Hutchins, G.D., Hichwa, R.D., and Koeppe, R.A., 1986, A continuous flow input function detector for 15O-H2O blood flow studies in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 33:546.

    Article  Google Scholar 

  • Hutchins, G.D., Rogers, W.L., Chiao, P., Raylman, R.R., and Murphy, B.W., 1990, Constrained least squares filtering in high resolution PET and SPECT imaging, I.E.E.E. Trans. Nucl. Sci. 37:647.

    Article  Google Scholar 

  • Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., and Uemura, K., 1986, Error analysis of quantitative cerebral blood flow measurement using 15O-H2O autoradiography and positron emission tomography, with respect to the dispersion of the input function, J. Cereb. Blood Flow Metabol. 6:536.

    Article  CAS  Google Scholar 

  • Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., and Kuhl, D.E., 1990, Correlation methods for the centering, rotation, and alignment of functional brain images, J. Nucl. Med. 31:1220.

    PubMed  CAS  Google Scholar 

  • Kak, A.C., Slaney, M., 1988, “Principles of Computerized Tomographic Imaging”, Institute of Electrical and Electronics Engineers, Inc., New York.

    Google Scholar 

  • Karp, J.S., Daube-Witherspoon, M.E., Hoffman, E.J., Lewellen, T.K., Links, J.M., Wong, W.-H., Hichwa, R.D., Casey, M.E., Colsher, J.G., Hitchens, R.E., Muehllehner, G., and Stoub, E.W., 1991, Performance standards in positron emission tomography, J. Nucl. Med. 32:2342.

    PubMed  CAS  Google Scholar 

  • Kearfott, K.J., 1989a, Sinograms and diagnostic tools for the quality assurance of a positron emission tomograph, J. Nucl. Med. Tech. 17:83.

    Google Scholar 

  • Kearfott, K.J., 1989b, Long-term performance of a multiplanar positron emission tomograph, J. Nucl. Med. 30:1378.

    PubMed  CAS  Google Scholar 

  • Kearfott, K.J., 1989c, Performance of a well counter and a dose calibrator for quantitative positron emission tomography, Health Physics 57:623.

    Article  PubMed  CAS  Google Scholar 

  • Kearfott, K.J. and Carroll, L.R., 1984, Evaluation of the performance characteristics of the PC 4600 positron emission tomograph, J. Comput. Assist. Tomogr. 8:502.

    Article  PubMed  CAS  Google Scholar 

  • Kearfott, K.J., and Kluksdahl, E.M., 1989, Effects of axial spatial resolution and sampling on object detectability and contrast for multiplanar positron emission tomography, Med. Phys. 16:785.

    Article  PubMed  CAS  Google Scholar 

  • Kearfott, K.J., and Rucker, R.H., 1989, Median polish for quality assurance of a PET scanner, J. Comput. Assist. Tomogr. 13:932.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, R.M., Ellis, J.R., Eden, M., 1984, Analysis of emission computed tomographic scan data: limitations imposed by resolution and background, J. Comput. Assist Tomogr. 8:514.

    Article  PubMed  CAS  Google Scholar 

  • King, M.A., Hademenos, G.J., and Glick, S.J., 1992, A dual-photopeak window method for scatter correction, J. Nucl. Med. 33:605.

    PubMed  CAS  Google Scholar 

  • King, P.H., Hubner, K., Gibbs, W., and Holloway, E., 1981, Noise identification and removal in positron imaging systems, I.E.E.E. Trans. Nucl. Sci. 28:148.

    Article  Google Scholar 

  • Knoll, G.F., 1979, “Radiation Detection and Measurement,” John Wiley and Sons, New York. 692–697.

    Google Scholar 

  • Kotzerke, J., Hicks, R.J., Wolfe, E., Herman, W.H., Molina, E., Kuhl, D.E., and Schwaiger, M., 1990, Three-dimensional assessment of myocardial oxidative metabolism: a new approach for regional determination of PET-derived carbon-11-acetate kinetics, J. Nucl. Med. 31:1876.

    PubMed  CAS  Google Scholar 

  • Kubler, W.K., Ostertag, H., Hoverath, H., 1988, Scatter suppression by using a rotating pin source in PET transmission measurements, I.E.E.E. Trans. Nucl. Sci. 35:749.

    Article  Google Scholar 

  • Kuhle, W.G., Porenta, G., Huang, S.-C., Phelps, M.E., and Schelbert, H.R., 1992, Issues in quantitation of reoriented cardiac PET images, J. Nucl. Med. 33:1235.

    PubMed  CAS  Google Scholar 

  • Levy, A.V., Brodie, J.D., Russel, J.A.G., Volkow, N.D., Laska, E., and Wolf, A.P., 1989, The metabolic centroid method for PET brain image analysis, 1989, J. Cereb. Blood Flow Metab. 9:388.

    Article  PubMed  CAS  Google Scholar 

  • Levy, A.V., Gomez-Mont, F., Volkow, N.D., Corona, J.F., Brodie, J.D., and Cancro, R., 1991, J. Nucl. Med. 33:287.

    Google Scholar 

  • Liow, J.-S., and Strother, S.C., 1991, Practical tradeoffs between noise, quantitation, and number of iterations for maximum likelihood-based reconstructions, I.E.E.E. Trans. Medical Imaging 10:563.

    Article  CAS  Google Scholar 

  • Litton, J.E., and Eriksson, L., 1990, Transcutaneous measurement of the arterial input function in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 37:627.

    Article  Google Scholar 

  • McCord, M.E., Bacharach, S.L., Bonow, R.O., Dilsizian, V., Cuocolo, A., and Freedman, N., 1992, Misalignment between PET transmission and emission scans: its effect on myocardial imaging, J. Nucl. Med. 33:1209.

    PubMed  CAS  Google Scholar 

  • McKee, B.T.A., Gurvey, A.T., Harvey, P.J., and Howse, D.C., 1992, A deconvolution scatter correction for a 3-D PET system, I.E.E.E. Trans. Medical Imaging 11:560.

    Article  CAS  Google Scholar 

  • Meikle, S.R., Dahlbom, M., and Cherry, S.R., 1993, Attenuation correction using count-limited transmission data in positron emission tomography, J. Nucl Med. 34:143.

    PubMed  CAS  Google Scholar 

  • Miller, T.R., and Wallis, J.W., 1992, Fast maximum-likelihood reconstruction, J. Nucl. Med. 33: 1710.

    PubMed  CAS  Google Scholar 

  • Minoshima, S., Koeppe, R.A., Mintun, M.A., Berger, K.L., Taylor, S.F., Frey, K.A., and Kuhl, D.E., 1993, Automated detection of the intercommissural line for stereotactic localization of functional brain images, J. Nucl. Med. 34:322.

    PubMed  CAS  Google Scholar 

  • Minoshima, S., Berger, K.L., Lee, K.S., and Mintun, M.A., 1992, An automated method for rotational correction and centering of three-dimensional functional brain images, J. Nucl. Med. 33:1579.

    PubMed  CAS  Google Scholar 

  • Mintun, M.A., Fox, P.T., and Raichle, M.E., 1989, A highly accurate method of localizing regions of neuronal activation in the human brain with positron emission tomography, J. Cereb. Blood Flow Metab. 9:96.

    Article  PubMed  CAS  Google Scholar 

  • Moses, W.W., 1990, Performance of a coincidence based blood activity monitor, I.E.E.E. Trans. Nucl. Sci. 37:580.

    Article  Google Scholar 

  • Natterer, F., 1986, “The Mathematics of Computerized Tomography”, John Wiley and Sons, New York.

    Google Scholar 

  • Ohtake, T., Kosaka, N., Watanabe, T., Yokoyama, I., Moritan, T. et al., 1991, Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs, J. Nucl. Med. 32:1432.

    PubMed  CAS  Google Scholar 

  • Ollinger, J.M., 1992, Reconstruction-reprojection processing of transmission scans and the variance of PET images, I.E.E.E. Trans. Nucl. Sci. 39:1122.

    Article  CAS  Google Scholar 

  • Palmer, M.R., Rogers, J.G., Bergström, M., Beddoes, M.P., and Pate, B.D., 1986, Transmission profile filtering for positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 33:478.

    Article  Google Scholar 

  • Palmer, M.R., and Brownell, G.L., 1992, Annihilation density distribution calculations for medically important positron emitters, 1992, I.E.E.E. Trans. Medical Imaging 11:373.

    Article  CAS  Google Scholar 

  • Parker, J.A., 1990, “Image Reconstruction in Radiology”, CRC Press, Boca Raton.

    Google Scholar 

  • Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L., and Kuhl, D.E., 1979, Tomographic measurement of local cerebral glucose metabolic rate in humans with 18FDG: validation of method, Ann. Neurol. 6:371.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, P.R., 1989, Bayesian statistics, factor analysis and PET images: Mathematical background, I.E.E.E. Trans. Medical Imaging 8:125.

    Article  CAS  Google Scholar 

  • Phillips, R.L., London, E.D., Links, J.M., and Cascella, N.G., 1990, Program for PET image alignment: effects on calculated differences in cerebral metabolic rates for glucose, J. Nucl. Med. 31:2052.

    PubMed  CAS  Google Scholar 

  • Politte, D.G., and Snyder, D.L., 1991, Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography, I.E.E.E. Trans. Medical Imaging 10:82.

    Article  CAS  Google Scholar 

  • Pretorius, P.H., van Rensburg, A.J., van Aswegen, A., Lötter, M.G., Serfontein, D.E., and Herbst, C.P., 1993, The channel ratio method of scatter correction for radionuclide image quantitation, J. Nucl. Med. 34:330.

    PubMed  CAS  Google Scholar 

  • Rajeswaran, S., Biley, D., Hume, S., Jones, T., and Townsend, D., 1990, 2-D and 3-D imaging of small animals and the human radial artery with a high resolution detector for PET, I.E.E.E. conference record, I.E.E.E. nuclear science symposium II: 1308.

    Google Scholar 

  • Ranganath, M.V., Dhawan, A.P., and Mullani, N., 1988, A multigrid expectation maximization reconstruction algorithm for positron emission tomography, I.E.E.E. Trans. Medical Imaging 7:273.

    Article  CAS  Google Scholar 

  • Ranger, N.T., Thompson, C., and Evans, A.C., 1989, The application of a masked orbiting transmission source for attenuation correction in PET, J. Nucl. Med. 30:1056.

    PubMed  CAS  Google Scholar 

  • Robb, R.A., and Barillot, C., 1989, Interactive display and analysis of 3-D medical images, I.E.E.E. Trans. Medical Imaging 8:217.

    Article  CAS  Google Scholar 

  • Robeson, W., Dhawan, V., and Babchyck, B., 1990, A new approach to the measurement of resolution and sampling on a positron emission tomograph, I.E.E.E. Trans. Nucl. Sci. 37: 1506.

    Article  CAS  Google Scholar 

  • Siegel, S., and Dahlbom, M., 1992, Implementation and evaluation of a calculated attenuation correction for PET, I.E.E.E. Trans. Nucl. Sci. 39:1117.

    Article  CAS  Google Scholar 

  • Sossi, V., Buckley, K.R., Snow, B.J., Holden, J.E., Morrison, S., Pate, B.D., and Ruth, T.J., 1993, Recovery of the human striatal signal in a slice oriented positron emission tomograph, J. Nucl Med. 34:481.

    PubMed  CAS  Google Scholar 

  • Stearns, C.W., Chesler, D.A., and Brownell, G.L., 1990, Accelerated image reconstruction for a cylindrical positron tomograph using Fourier domain methods, I.E.E.E. Trans. Nucl. Sci. 37:772.

    Article  Google Scholar 

  • Strother, S.C., Casey, M.E., and Hoffman, E.J., 1990, Measuring PET scanner sensitivity: Relating countrates to image signal-to-noise ratios using noise equivalent counts, I.E.E.E. Trans. Nucl. Sci. 37:783.

    Article  Google Scholar 

  • Thompson, C.J., Ranger, N., and Gjedde, A., 1991, Validation of simultaneous PET emission and transmission scans, J. Nucl. Med. 32:154.

    PubMed  CAS  Google Scholar 

  • Townsend, D.W., Geissbuhler, A., Defrise, M., Hoffman, E.J., Spinks, T.J., Bailey, D.L., Gilardi, M.-C., and Jones, T., 1991, Fully three-dimensional reconstruction for a PET camera with retractable septa, I.E.E.E. Trans. Medical Imaging 10:505.

    Article  CAS  Google Scholar 

  • Valentino, D.J., Mazziotta, J.C., and Huang, H.K., 1991, Volume rendering of multimodal images: application to MRI and PET imaging of the human brain, I.E.E.E. Trans. Medical Imaging 10:554.

    Article  CAS  Google Scholar 

  • Votaw, J.R., Nickles, R.J., Meyer, H.O., Hutchins, G.D., and Satter, M.R., 1986, One-nanosecond overlap coincidence counting to track PET agents over six decades, I.E.E.E. Trans. Nucl. Sci. 33:486.

    Article  Google Scholar 

  • Wallis, J.W., and Miller, T.R., 1991, Three-dimensional display in nuclear medicine and radiology, J. Nucl. Med. 32:534.

    PubMed  CAS  Google Scholar 

  • Wallis, J.W., Miller, T.R., Lerner, C.A., and Kleerup, E.C., 1989, Three-dimensional display in nuclear medicine, I.E.E.E. Trans. Medical Imaging 8:297.

    Article  CAS  Google Scholar 

  • Weinberg, I.N., Huang, S.C., and Hoffman, E.J. et al., 1988, Validation of PET-acquired input functions for cardiac studies with 82Rb, J. Nucl. Med. 29:241.

    PubMed  CAS  Google Scholar 

  • Xu, E.Z., Mullani, N.A., Gould, K.L., and Anderson, W.L., 1991, A segmented attenuation correction for PET, J. Nucl. Med. 32:161.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kearfott, K.J., Votaw, J.R. (1995). The Basics of Positron Emission Tomographic (PET) Imaging. In: Emran, A.M. (eds) Chemists’ Views of Imaging Centers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9670-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9670-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9672-8

  • Online ISBN: 978-1-4757-9670-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics