The Basics of Positron Emission Tomographic (PET) Imaging

  • K. J. Kearfott
  • J. R. Votaw


Positron Emission Tomographic (PET) imaging is accomplished through the coincident detection of the 511 keV photons arising from the annihilation of positrons in material. PET imaging presents several advantages over other medical imaging techniques but also presents unique imaging challenges. PET detection efficiency is increased when compared to Single Photon Emission Computerized Tomographic (SPECT) techniques because electronic collimation of the detected photon removes the requirement for inefficient lead collimation. PET transaxial images have the best spatial and temporal resolution and quantitative accuracy of all nuclear medicine imaging modalities. Current manufacturers of PET instrumentation have optimized spatial resolution to near the limits imposed by the physics of positron flight and annihilation. Absolute quantitation is achieved using the fact that the total path length traveled by both annihilation photons is a constant regardless of the origin of the annihilation. This allows precise attenuation correction without iteration. The availability of biologically relevant tracers enables PET users to quantify in vivo physiological parameters through the application of mathematical models to static or a series of dynamic images. The desirability of absolute activity quantification and accurate parametric physiological images increases the importance of camera performance and image quality for PET.


Positron Emission Tomography Attenuation Correction Point Spread Function Annihilation Photon Cardiac Positron Emission Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adair, T., Karp, P., Stein, A., Ruzena, B., Reivich, M., 1981, Computer assisted analysis of tomographic images of the brain, J. Comput. Assist Tomog.r. 5:929.CrossRefGoogle Scholar
  2. Atkins, M.S., Murray, D., and Harrop, R., 1991, Use of transputers in a 3-d positron emission tomograph, I.E.E.E. Trans. Medical Imaging 10:276.CrossRefGoogle Scholar
  3. Bacharach, S.L., Douglas, M.A., Carson, R.E., Kalkowski, P.J., Freedman, N.M.T., Perrone-Filardi, P., and Bonow, R.O., 1993, Three-dimensional registration of cardiac positron emission tomography attenuation scans, J. Nucl. Med. 34:311.PubMedGoogle Scholar
  4. Bailey, D.L., Jones, T., Spinks, T.J., Gilardi, M.-C., and Townsend, D.W., 1991, noise equivalent count measurements in a neuro-PET scanner with retractable septa, I.E.E.E. Trans. Medical Imaging 10:256.CrossRefGoogle Scholar
  5. Barresi, S., Bollini, D., and Del Guerra, A., 1990, Use of a transputer system for fast 3-D image reconstruction in 3-D PET, I.E.E.E. Trans. Nucl. Sci. 37:812.CrossRefGoogle Scholar
  6. Barrett, H.H., Swindell, W., 1981, “Radiological Imaging: The Theory of Image Formation, Detection, and Processing, Volume 2”, Academic Press, New York.Google Scholar
  7. Bergström, M., Eriksson, L., Bohm, C., Blomqvist, G., and Litton, H., 1983, Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections, J. Comput Assist. Tomogr. 7:42.PubMedCrossRefGoogle Scholar
  8. Bergström, M., Litton, J., Eriksson, L., Bohm, C., and Blomqvist, G., 1982, Determination of object contour from projections for attenuation correction in cranial positron emission tomography, J. Comput Assist Tomogr. 6:365.PubMedCrossRefGoogle Scholar
  9. Bettinardi, V., Gilardi, M.C., Lucignani, G., Landoni, C., Rizzo, G., Striano, G., and Fazio, F., 1993, A procedure for patient repositioning and compensation for misalignment between transmission and emission data in PET heart studies, J. Nucl. Med. 34:137.PubMedGoogle Scholar
  10. Carson, R.E., Daube-Witherspoon, M., and Green, M.V., 1988, A method for postinjection PET transmission measurements with a rotating source, J. Nucl. Med. 29:1558.PubMedGoogle Scholar
  11. Chen, C.-T., Johnson, V.E., Wong, W.H., Hu, X., and Metz, C.E., 1990, Bayesian image reconstruction in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 37:636.CrossRefGoogle Scholar
  12. Chen, C.M., Lee, S.-Y., and Cho, Z.H., 1991, Parallelization of the EM algorithm for 3-D PET image reconstruction, I.E.E.E. Trans. Medical Imaging 10:513.CrossRefGoogle Scholar
  13. Cherry, S.R., Meikle, S.R., and Hoffman, E.J., 1993, Correction and characterization of scattered events in three-dimensional PET using scanners with retractable septa, J. Nucl. Med. 34:671.PubMedGoogle Scholar
  14. Choi, Y., Hawkins, R.A., and Huang, S.C. et al., 1991, Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2- FDG studies, J. Nucl. Med. 32:33.Google Scholar
  15. Clack, R., Townsend, D., and Defrise, M., 1989, An algorithm for three-dimensional reconstruction incorporating cross-plane rays, I.E.E.E. Trans. Medical Imaging 8:32.CrossRefGoogle Scholar
  16. Correia, J., 1992, A bloody future for clinical PET?, J. Nucl. Med. 32:620.Google Scholar
  17. Dahlbom, M., and Hoffman, E.J., 1987, Problems in signal-to-noise ratio for attenuation correction in high resolution PET, I.E.E.E. Trans. Nucl. Sci. 34:288.CrossRefGoogle Scholar
  18. Dahlbom, M., Yu, D.-C., Cherry, S.R., Chatziioannou, A., and Hoffman, E.J., 1992, Methods for improving image quality in whole body PET scanning, I.E.E.E. Trans. Nucl. Sci. 39:1079.CrossRefGoogle Scholar
  19. Daube-Witherspoon, M., Carson, R.E., 1991, Unified deadtime correction model for PET, I.E.E.E. Trans. Medical Imaging 10:267.CrossRefGoogle Scholar
  20. Daube-Witherspoon, M., Carson, R.E., Green, M.V., 1988, Postinjection transmission attenuation measurements for PET, I.E.E.E. Trans. Nucl Sci. 35:757.CrossRefGoogle Scholar
  21. DiChiro, G., and Brooks, R.A., 1988, PET quantitation: a blessing and curse, J. Nucl. Med. 29:1603.Google Scholar
  22. Endo, M., and Iinuma, 1984, Software correction of scatter coincidence in positron CT, Euro. J. Nucl. Med. 9:391.CrossRefGoogle Scholar
  23. Erlandsson, K., and Strand, S.-E., 1992, A new approach to three-dimensional image reconstruction in PET, I.E.E.E. Trans. Nucl. Sci. 39:1438.CrossRefGoogle Scholar
  24. Eriksson, L., Holte, S., Bohm, C., Kesselberg, M., and Hovander, B., 1988, Automated blood sampling systems for positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 35:703.CrossRefGoogle Scholar
  25. Fox, P.T., Mintun, M.A., Raichle, M.E., Miezin, F.M., Allman, J.M., and Van Essen, D.C., 1986, Mapping of human visual cortex with positron emission tomography, Nature 332:806.CrossRefGoogle Scholar
  26. Fox, P.T., Mintun, M.A., Reiman, E.M., and Raichle, M.E., 1988, Enhanced detection of focal brain responses using intersubject averaging and change distribution analysis of subtracted PET images, J. Cereb. Blood Flow Metab. 8:642.PubMedCrossRefGoogle Scholar
  27. Freedman, N.M.T., Bacharach, S.L., McCord, M.E., and Bonow, R.O., 1992, Spatially dependent deadtime losses in high count rate cardiac PET, J. Nucl. Med. 33:2226.PubMedGoogle Scholar
  28. Gambhir, S.S., Schwaiger, M., and Huang, S.C. et al., 1989, Simple noninvasive quantification for measuring myocardial glucose utilization in humans employing PET and FDG, J. Nucl. Med. 30:359.PubMedGoogle Scholar
  29. Ganti, G., Ranganath, M.V., Mullani, N.A., and Gould, K.L., 1989, A multiresolution method for attenuation correction in positron emission tomography, J. Nucl. Med. 30:880.Google Scholar
  30. Germano, G., Chen, B.C., Huang, S.-C., Gambhir, S.S., Hoffman, E.J., and Phelps, M.E., Use of the abdominal aorta for arterial input function determination in hepatic and renal PET studies, J. Nucl. Med. 33:613.Google Scholar
  31. Haber, S.F., Derenzo, S.E., and Uber, D., 1990, Application of mathematical removal of positron range blurring in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 37:1293.CrossRefGoogle Scholar
  32. Herman, G.T., 1980, “Image Reconstruction from Projections: The Fundamentals of Computerized Tomography”, Academic Press, New York.Google Scholar
  33. Herman, G.T., 1991, Performance evaluation of an iterative image reconstruction algorithm for positron emission tomography, I.E.E.E. Trans. on Medical Imaging 10:336.CrossRefGoogle Scholar
  34. Hicks, K., Ganti, G., Mullani, N., and Gould, K.L., 1989, Automated quantitation of three-dimensional cardiac positron emission tomography for routine clinical use, J. Nucl. Med. 30:1787.PubMedGoogle Scholar
  35. Hoffman, E.J., and Phelps, M.E., Positron emission tomography: principles and quantitation, in: “Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart,” M. Phelps, J. Mazziotta, and H. Schelbert, eds., Raven Press, New York (1986).Google Scholar
  36. Hoffman, E.J., Huang, S.C., and Phelps, M.E., 1979, Quantitation in positron emission computer tomography: effects of object size, J. Comput. Assist. Tomogr. 3:299.PubMedCrossRefGoogle Scholar
  37. Hoffman, E.J., Cutler, P.D., Digby, W.M., and Mazziotta, J.C., 1990, 3-D phantom to simulate cerebral blood flow and metabolic images for PET, I.E.E.E. Trans. Nucl. Sci. 3:616.CrossRefGoogle Scholar
  38. Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G., and Eriksson, L., 1990, Iterative image reconstruction for positron emission tomography: a study of convergence and quantitation problems, I.E.E.E. Trans. Nucl. Sci. 37:629.CrossRefGoogle Scholar
  39. Huang, S.-C., Hoffman, E.J., Phelps, M.E., and Kuhl, D.E., 1979, Quantitation in positron emission computed tomography: Effects of inaccurate attenuation correction, J. Comput. Assist. Tomogr. 3:804.PubMedGoogle Scholar
  40. Huang, S.-C., Carson, R.E., Phelps, M.E., Hoffman, E.J., Schelbert, H.R., and Kuhl, D.E., 1981, A boundary method for attenuation correction in positron computed tomography, J. Nucl. Med. 22:627.PubMedGoogle Scholar
  41. Huang, S.-C., and Yu, D.-C., 1992, Capability evaluation of a sinogram error detection and correction method in computed tomography, I.E.E.E. Trans. Nucl. Sci. 39:1106.CrossRefGoogle Scholar
  42. Huesman, R.H., Derenzo, S.E., and Cahoon, J.L., 1988, Orbiting transmission source for positron tomography, I.E.E.E. Trans. Nucl. Sci. 35:735.CrossRefGoogle Scholar
  43. Hutchins, G.D., Hichwa, R.D., and Koeppe, R.A., 1986, A continuous flow input function detector for 15O-H2O blood flow studies in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 33:546.CrossRefGoogle Scholar
  44. Hutchins, G.D., Rogers, W.L., Chiao, P., Raylman, R.R., and Murphy, B.W., 1990, Constrained least squares filtering in high resolution PET and SPECT imaging, I.E.E.E. Trans. Nucl. Sci. 37:647.CrossRefGoogle Scholar
  45. Iida, H., Kanno, I., Miura, S., Murakami, M., Takahashi, K., and Uemura, K., 1986, Error analysis of quantitative cerebral blood flow measurement using 15O-H2O autoradiography and positron emission tomography, with respect to the dispersion of the input function, J. Cereb. Blood Flow Metabol. 6:536.CrossRefGoogle Scholar
  46. Junck, L., Moen, J.G., Hutchins, G.D., Brown, M.B., and Kuhl, D.E., 1990, Correlation methods for the centering, rotation, and alignment of functional brain images, J. Nucl. Med. 31:1220.PubMedGoogle Scholar
  47. Kak, A.C., Slaney, M., 1988, “Principles of Computerized Tomographic Imaging”, Institute of Electrical and Electronics Engineers, Inc., New York.Google Scholar
  48. Karp, J.S., Daube-Witherspoon, M.E., Hoffman, E.J., Lewellen, T.K., Links, J.M., Wong, W.-H., Hichwa, R.D., Casey, M.E., Colsher, J.G., Hitchens, R.E., Muehllehner, G., and Stoub, E.W., 1991, Performance standards in positron emission tomography, J. Nucl. Med. 32:2342.PubMedGoogle Scholar
  49. Kearfott, K.J., 1989a, Sinograms and diagnostic tools for the quality assurance of a positron emission tomograph, J. Nucl. Med. Tech. 17:83.Google Scholar
  50. Kearfott, K.J., 1989b, Long-term performance of a multiplanar positron emission tomograph, J. Nucl. Med. 30:1378.PubMedGoogle Scholar
  51. Kearfott, K.J., 1989c, Performance of a well counter and a dose calibrator for quantitative positron emission tomography, Health Physics 57:623.PubMedCrossRefGoogle Scholar
  52. Kearfott, K.J. and Carroll, L.R., 1984, Evaluation of the performance characteristics of the PC 4600 positron emission tomograph, J. Comput. Assist. Tomogr. 8:502.PubMedCrossRefGoogle Scholar
  53. Kearfott, K.J., and Kluksdahl, E.M., 1989, Effects of axial spatial resolution and sampling on object detectability and contrast for multiplanar positron emission tomography, Med. Phys. 16:785.PubMedCrossRefGoogle Scholar
  54. Kearfott, K.J., and Rucker, R.H., 1989, Median polish for quality assurance of a PET scanner, J. Comput. Assist. Tomogr. 13:932.PubMedCrossRefGoogle Scholar
  55. Kessler, R.M., Ellis, J.R., Eden, M., 1984, Analysis of emission computed tomographic scan data: limitations imposed by resolution and background, J. Comput. Assist Tomogr. 8:514.PubMedCrossRefGoogle Scholar
  56. King, M.A., Hademenos, G.J., and Glick, S.J., 1992, A dual-photopeak window method for scatter correction, J. Nucl. Med. 33:605.PubMedGoogle Scholar
  57. King, P.H., Hubner, K., Gibbs, W., and Holloway, E., 1981, Noise identification and removal in positron imaging systems, I.E.E.E. Trans. Nucl. Sci. 28:148.CrossRefGoogle Scholar
  58. Knoll, G.F., 1979, “Radiation Detection and Measurement,” John Wiley and Sons, New York. 692–697.Google Scholar
  59. Kotzerke, J., Hicks, R.J., Wolfe, E., Herman, W.H., Molina, E., Kuhl, D.E., and Schwaiger, M., 1990, Three-dimensional assessment of myocardial oxidative metabolism: a new approach for regional determination of PET-derived carbon-11-acetate kinetics, J. Nucl. Med. 31:1876.PubMedGoogle Scholar
  60. Kubler, W.K., Ostertag, H., Hoverath, H., 1988, Scatter suppression by using a rotating pin source in PET transmission measurements, I.E.E.E. Trans. Nucl. Sci. 35:749.CrossRefGoogle Scholar
  61. Kuhle, W.G., Porenta, G., Huang, S.-C., Phelps, M.E., and Schelbert, H.R., 1992, Issues in quantitation of reoriented cardiac PET images, J. Nucl. Med. 33:1235.PubMedGoogle Scholar
  62. Levy, A.V., Brodie, J.D., Russel, J.A.G., Volkow, N.D., Laska, E., and Wolf, A.P., 1989, The metabolic centroid method for PET brain image analysis, 1989, J. Cereb. Blood Flow Metab. 9:388.PubMedCrossRefGoogle Scholar
  63. Levy, A.V., Gomez-Mont, F., Volkow, N.D., Corona, J.F., Brodie, J.D., and Cancro, R., 1991, J. Nucl. Med. 33:287.Google Scholar
  64. Liow, J.-S., and Strother, S.C., 1991, Practical tradeoffs between noise, quantitation, and number of iterations for maximum likelihood-based reconstructions, I.E.E.E. Trans. Medical Imaging 10:563.CrossRefGoogle Scholar
  65. Litton, J.E., and Eriksson, L., 1990, Transcutaneous measurement of the arterial input function in positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 37:627.CrossRefGoogle Scholar
  66. McCord, M.E., Bacharach, S.L., Bonow, R.O., Dilsizian, V., Cuocolo, A., and Freedman, N., 1992, Misalignment between PET transmission and emission scans: its effect on myocardial imaging, J. Nucl. Med. 33:1209.PubMedGoogle Scholar
  67. McKee, B.T.A., Gurvey, A.T., Harvey, P.J., and Howse, D.C., 1992, A deconvolution scatter correction for a 3-D PET system, I.E.E.E. Trans. Medical Imaging 11:560.CrossRefGoogle Scholar
  68. Meikle, S.R., Dahlbom, M., and Cherry, S.R., 1993, Attenuation correction using count-limited transmission data in positron emission tomography, J. Nucl Med. 34:143.PubMedGoogle Scholar
  69. Miller, T.R., and Wallis, J.W., 1992, Fast maximum-likelihood reconstruction, J. Nucl. Med. 33: 1710.PubMedGoogle Scholar
  70. Minoshima, S., Koeppe, R.A., Mintun, M.A., Berger, K.L., Taylor, S.F., Frey, K.A., and Kuhl, D.E., 1993, Automated detection of the intercommissural line for stereotactic localization of functional brain images, J. Nucl. Med. 34:322.PubMedGoogle Scholar
  71. Minoshima, S., Berger, K.L., Lee, K.S., and Mintun, M.A., 1992, An automated method for rotational correction and centering of three-dimensional functional brain images, J. Nucl. Med. 33:1579.PubMedGoogle Scholar
  72. Mintun, M.A., Fox, P.T., and Raichle, M.E., 1989, A highly accurate method of localizing regions of neuronal activation in the human brain with positron emission tomography, J. Cereb. Blood Flow Metab. 9:96.PubMedCrossRefGoogle Scholar
  73. Moses, W.W., 1990, Performance of a coincidence based blood activity monitor, I.E.E.E. Trans. Nucl. Sci. 37:580.CrossRefGoogle Scholar
  74. Natterer, F., 1986, “The Mathematics of Computerized Tomography”, John Wiley and Sons, New York.Google Scholar
  75. Ohtake, T., Kosaka, N., Watanabe, T., Yokoyama, I., Moritan, T. et al., 1991, Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs, J. Nucl. Med. 32:1432.PubMedGoogle Scholar
  76. Ollinger, J.M., 1992, Reconstruction-reprojection processing of transmission scans and the variance of PET images, I.E.E.E. Trans. Nucl. Sci. 39:1122.CrossRefGoogle Scholar
  77. Palmer, M.R., Rogers, J.G., Bergström, M., Beddoes, M.P., and Pate, B.D., 1986, Transmission profile filtering for positron emission tomography, I.E.E.E. Trans. Nucl. Sci. 33:478.CrossRefGoogle Scholar
  78. Palmer, M.R., and Brownell, G.L., 1992, Annihilation density distribution calculations for medically important positron emitters, 1992, I.E.E.E. Trans. Medical Imaging 11:373.CrossRefGoogle Scholar
  79. Parker, J.A., 1990, “Image Reconstruction in Radiology”, CRC Press, Boca Raton.Google Scholar
  80. Phelps, M.E., Huang, S.C., Hoffman, E.J., Selin, C., Sokoloff, L., and Kuhl, D.E., 1979, Tomographic measurement of local cerebral glucose metabolic rate in humans with 18FDG: validation of method, Ann. Neurol. 6:371.PubMedCrossRefGoogle Scholar
  81. Phillips, P.R., 1989, Bayesian statistics, factor analysis and PET images: Mathematical background, I.E.E.E. Trans. Medical Imaging 8:125.CrossRefGoogle Scholar
  82. Phillips, R.L., London, E.D., Links, J.M., and Cascella, N.G., 1990, Program for PET image alignment: effects on calculated differences in cerebral metabolic rates for glucose, J. Nucl. Med. 31:2052.PubMedGoogle Scholar
  83. Politte, D.G., and Snyder, D.L., 1991, Corrections for accidental coincidences and attenuation in maximum-likelihood image reconstruction for positron-emission tomography, I.E.E.E. Trans. Medical Imaging 10:82.CrossRefGoogle Scholar
  84. Pretorius, P.H., van Rensburg, A.J., van Aswegen, A., Lötter, M.G., Serfontein, D.E., and Herbst, C.P., 1993, The channel ratio method of scatter correction for radionuclide image quantitation, J. Nucl. Med. 34:330.PubMedGoogle Scholar
  85. Rajeswaran, S., Biley, D., Hume, S., Jones, T., and Townsend, D., 1990, 2-D and 3-D imaging of small animals and the human radial artery with a high resolution detector for PET, I.E.E.E. conference record, I.E.E.E. nuclear science symposium II: 1308.Google Scholar
  86. Ranganath, M.V., Dhawan, A.P., and Mullani, N., 1988, A multigrid expectation maximization reconstruction algorithm for positron emission tomography, I.E.E.E. Trans. Medical Imaging 7:273.CrossRefGoogle Scholar
  87. Ranger, N.T., Thompson, C., and Evans, A.C., 1989, The application of a masked orbiting transmission source for attenuation correction in PET, J. Nucl. Med. 30:1056.PubMedGoogle Scholar
  88. Robb, R.A., and Barillot, C., 1989, Interactive display and analysis of 3-D medical images, I.E.E.E. Trans. Medical Imaging 8:217.CrossRefGoogle Scholar
  89. Robeson, W., Dhawan, V., and Babchyck, B., 1990, A new approach to the measurement of resolution and sampling on a positron emission tomograph, I.E.E.E. Trans. Nucl. Sci. 37: 1506.CrossRefGoogle Scholar
  90. Siegel, S., and Dahlbom, M., 1992, Implementation and evaluation of a calculated attenuation correction for PET, I.E.E.E. Trans. Nucl. Sci. 39:1117.CrossRefGoogle Scholar
  91. Sossi, V., Buckley, K.R., Snow, B.J., Holden, J.E., Morrison, S., Pate, B.D., and Ruth, T.J., 1993, Recovery of the human striatal signal in a slice oriented positron emission tomograph, J. Nucl Med. 34:481.PubMedGoogle Scholar
  92. Stearns, C.W., Chesler, D.A., and Brownell, G.L., 1990, Accelerated image reconstruction for a cylindrical positron tomograph using Fourier domain methods, I.E.E.E. Trans. Nucl. Sci. 37:772.CrossRefGoogle Scholar
  93. Strother, S.C., Casey, M.E., and Hoffman, E.J., 1990, Measuring PET scanner sensitivity: Relating countrates to image signal-to-noise ratios using noise equivalent counts, I.E.E.E. Trans. Nucl. Sci. 37:783.CrossRefGoogle Scholar
  94. Thompson, C.J., Ranger, N., and Gjedde, A., 1991, Validation of simultaneous PET emission and transmission scans, J. Nucl. Med. 32:154.PubMedGoogle Scholar
  95. Townsend, D.W., Geissbuhler, A., Defrise, M., Hoffman, E.J., Spinks, T.J., Bailey, D.L., Gilardi, M.-C., and Jones, T., 1991, Fully three-dimensional reconstruction for a PET camera with retractable septa, I.E.E.E. Trans. Medical Imaging 10:505.CrossRefGoogle Scholar
  96. Valentino, D.J., Mazziotta, J.C., and Huang, H.K., 1991, Volume rendering of multimodal images: application to MRI and PET imaging of the human brain, I.E.E.E. Trans. Medical Imaging 10:554.CrossRefGoogle Scholar
  97. Votaw, J.R., Nickles, R.J., Meyer, H.O., Hutchins, G.D., and Satter, M.R., 1986, One-nanosecond overlap coincidence counting to track PET agents over six decades, I.E.E.E. Trans. Nucl. Sci. 33:486.CrossRefGoogle Scholar
  98. Wallis, J.W., and Miller, T.R., 1991, Three-dimensional display in nuclear medicine and radiology, J. Nucl. Med. 32:534.PubMedGoogle Scholar
  99. Wallis, J.W., Miller, T.R., Lerner, C.A., and Kleerup, E.C., 1989, Three-dimensional display in nuclear medicine, I.E.E.E. Trans. Medical Imaging 8:297.CrossRefGoogle Scholar
  100. Weinberg, I.N., Huang, S.C., and Hoffman, E.J. et al., 1988, Validation of PET-acquired input functions for cardiac studies with 82Rb, J. Nucl. Med. 29:241.PubMedGoogle Scholar
  101. Xu, E.Z., Mullani, N.A., Gould, K.L., and Anderson, W.L., 1991, A segmented attenuation correction for PET, J. Nucl. Med. 32:161.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • K. J. Kearfott
    • 1
  • J. R. Votaw
    • 2
  1. 1.School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of RadiologyEmory University School of MedicineAtlantaUSA

Personalised recommendations