Advertisement

RFQ’s for Pet Radionuclide Production

  • R. W. Hamm
  • K. R. Crandall
  • J. M. Potter
  • M. R. Shubaly

Abstract

Positron emission tomography (PET) uses radiation emitted from tagged physiologically participative radiopharmaceuticals to provide detailed physiological images of in-vivo processes. The decay of these positron emitting tracer radionuclides injected into a subject provides two 511 keV annihilation gamma rays that can be detected and used to construct tomographic images. The most common radionuclides used to synthesize these tagged radiopharmaceuticals (11C., 13N, 15O and 18F) are short-lived and are made only by bombarding appropriate targets with accelerated ion beams. The most common ion beam used for this purpose is protons, although deuterons and 3He ion beams can also be used. Deuterons with modest energies (3 to 4 MeV) are most useful for the 14N(d, n)15O reaction, while higher energy deuterons have been used primarily for the 20Ne(d, α)18F reaction. The use of 3He ions at energies as low as 8 MeV to produce all four of the common PET isotopes is also a viable production technique. All of these ion beams can be generated by a class of new compact rf linear accelerator (linac) based on Radio Frequency Quadrupole (RFQ) technology.

Keywords

Positron Emission Tomography Neutron Radiography Radio Frequency Quadrupole Drift Tube Linac Alamos National Laboratory Report 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Hamm, K.R. Crandall, M.E. Hamm, L.D. Hansborough, and J.M. Potter, A compact proton linac for positron tomography, in: “Troc. 1986 Lin. Acc. Conf.,” SLAC-Report-303, 141 (1986).Google Scholar
  2. 2.
    R. Shefer, Radionuclide production for PET using electrostatic accelerators, in: this proceedings.Google Scholar
  3. 3.
    R.J. Adler and R.J. Richter-Sand, High voltage, high power nested high voltage accelerator, in: “Proc. 1991 Part. Acc. Conf.,” IEEE Conf. Record 91CH 3038–7, 3201 (1991).Google Scholar
  4. 4.
    K.R. Crandall, R.H. Stokes, and T.P. Wangler, RF quadrupole beam dynamics design studies, in: “Proc. 1979 Lin. Acc. Conf,” Brookhaven National Laboratory Report BNL-51134, 205 (1979).Google Scholar
  5. 5.
    H.S. Deaven and K.C.D. Chan, Computer codes for particle accelerator design and analysis: a compendium, in: “Los Alamos National Laboratory Report LA-UR-90–1766,” 142 (1990).Google Scholar
  6. 6.
    H. Klein, Development of the different RFQ accelerating structures and operation experience, IEEE Trans. Nucl. Sci. NS-30 4:3313 (1983).CrossRefGoogle Scholar
  7. 7.
    L.W. Alvarez, The design of a proton linear accelerator, Phys. Rev. 70:799 (1946).Google Scholar
  8. 8.
    E. Tanke, M. Vretenar, and M. Weiss, Performance of the CERN high-intensity RFQ, in: “Proc. 1990 Lin. Acc. Conf.,” Los Alamos National Laboratory Report LA-12004-C., 686 (1990).Google Scholar
  9. 9.
    G.M. Arbique, B.G. Chidley, G.E. McMichael, and J.Y. Sheikh, Beam parameter measurements on the cw RFQ1–1250 accelerator, in: Troc. 1992 Lin. Acc. Conf., Chalk River Laboratories Report AECL-10728, 55(1992).Google Scholar
  10. 10.
    J. Staples, RFQ’s in research and industry, in: “Proc. 1986 Lin. Acc. Conf.,” Stanford Linear Accelerator Center Report SLAC-Report-3, 227 (1986).Google Scholar
  11. 11.
    R.W. Hamm, Compact ion linear accelerators for neutron radiography, in: “Neutron Radiography (3) — Proc. Third World Conf. on Neutron Radiography,” S. Fujine, K. Kanda, and J.P. Barton, eds., Kluwer Academic Publishers, Dordrecht, 231 (1989).Google Scholar
  12. 12.
    R.W. Hamm, Commercial applications of linacs, in: “Proc. 1990 Lin. Acc. Conf.,” Los Alamos National Laboratory Report LA-12004-C., 558 (1990).Google Scholar
  13. 13.
    A. Schempp, H. Deitinghoff, M. de Saint Simon, C. Thibault, and F. Botlo-Pilat, Deceleration of antiprotons with a RFQ, in: “Proc. 1990 Lin. Acc. Conf.,” Los Alamos National Report LA-12004-C., 683 (1990).Google Scholar
  14. 14.
    A. Schempp, Variable energy and heavy ion RFQ’s, in: “Proc. 1990 Lin. Acc. Conf.,” Los Alamos National Report LA-12004-C., 555 (1990).Google Scholar
  15. 15.
    O.R. Sander et al., Commissioning the GTA accelerator, in:, Commissioning the GTA accelerator, in: “Proc. 1992 Lin. Acc. Conf.,” Chalk River Laboratories Report AECL-10728, 535 (1992).Google Scholar
  16. 16.
    H. Ma, H. Newman, R.Y. Zhu, and R. Hamm, Calibration of electromagnetic calorimeters in high energy physics experiments with a radio frequency quadrupole accelerator, Nucl. Inst. Meth. in Phys. Res., A281:469 (1989).CrossRefGoogle Scholar
  17. 17.
    W. Hagan, W. Cornelius, P. Young, M. Schulze, R. Little, K. Krohn, and J. Link, A helium-3 RFQ accelerator for PET tracer production, in: “Proc. IVth Intl. Workshop on Targetry and Target Chemistry,” Paul Scherrer Institute Report PSI-Proceeding-92–01, 19 (1992).Google Scholar
  18. 18.
    M.E. Schulze, A.E. Dabiri, D. Hoslin, and S.M. Ghiaasiaan, Thin window for an 8 MeV helium-3 PET RFQ accelerator target, in: “Proc. IVth Intl. Workshop on Targetry and Target Chemistry,” Paul Scherrer Institute Report PSI-Proceeding-92–01, 48 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. W. Hamm
    • 1
  • K. R. Crandall
    • 1
  • J. M. Potter
    • 1
  • M. R. Shubaly
    • 1
  1. 1.AccSys Technology, Inc.PleasantonUSA

Personalised recommendations