The Synthesis and Chemistry of Imidazole and Benzimidazole Nucleosides and Nucleotides

  • Gordon Shaw

Abstract

The scope of this review has been to examine methods that have been used for the synthesis of imidazole and benzimidazole nucleosides and nucleotides and to discuss the reactions of these compounds. Imidazole nucleotides and nucleosides occur naturally as important intermediates in the de novo biosynthesis of purine nucleotides, as materials concerned with histidine biosynthesis and as products of plant, animal, or microorganism metabolism. A brief outline of the known function or role of these particular substances in biochemical systems is also included.

Keywords

Purine Nucleoside Raney Nickel Triethyl Orthoformate Cyclic Phosphate Anomeric Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. B. Townsend, Chem. Rev. 67, 533 (1967).Google Scholar
  2. 2.
    L. B. Townsend and G. R. Revankar, Chem. Rev. 70, 389 (1970).PubMedGoogle Scholar
  3. 3.
    J. M. Buchanan and S.C. Hartman, Adv. Enzymol. 21, 199 (1959).Google Scholar
  4. 4.
    A. L. Lehninger, Biochemistry, 2nd ed., p. 706, Worth, New York (1975).Google Scholar
  5. 5.
    R. W. Schayer, Physiol. Rev. 39, 116 (1959).Google Scholar
  6. 6.
    K. Mizuno, M. Tsugune, M. Takada, M. Hayashi, K. Atsumi, K. Assano, and T. Matsuda, J. Antibiot. 27, 775 (1974).PubMedGoogle Scholar
  7. 7.
    R. J. Suhadolnik, Nucleoside Antibiotics, Wiley-Interscience, New York (1970).Google Scholar
  8. 8.
    J. T. Witkowski, R. K. Robins, R. W. Sidwell, and L. N. Simon, J. Med. Chem. 15, 1150 (1972).Google Scholar
  9. 9.
    R. W. Sidwell, J. H. Huffman, G. P. Khare, L. B. Allen, J. T. Witkowski, and R. K. Robins, Science 177, 705 (1972).Google Scholar
  10. 10.
    R. W. Sidwell, L. N. Simon, J. T. Witkowski, and R. K. Robins, Progress in Chemotherapy 2 889 (1974) (Proc. 8th Int. Congr. Chemother.,Athens, Greece).Google Scholar
  11. 11.
    R. W. Sidwell, G. P. Khare, L. B. Allen, J. H. Huffman, J. ‘1’. Witkowski, L. N. Simon, and R. K. Robins, Chemotherapy 21, 205 (1975).Google Scholar
  12. 12.
    M. R. Stetten and C. L. Fox, Jr., J. Biol. Chem. 161, 333 (1945).PubMedGoogle Scholar
  13. 13.
    W. Shive, W. W. Ackerman, M. Gordon, M. E. Getzendander, and R. Eakin, J. Am. Chem. Soc. 69, 725 (1947).Google Scholar
  14. 14.
    J. S. Gots, Nature 172, 256 (1953).Google Scholar
  15. 15.
    G. R. Greenberg, J. Am. Chem. Soc., 74, 6307 (1952).Google Scholar
  16. 16.
    G. R. Greenberg and E. L. Spilman, J. Biol. Chem. 219, 411 (1956).PubMedGoogle Scholar
  17. 17.
    J. M. Weaver and W. Shive, J. Am. Chem. Soc. 75 4628 (1953).Google Scholar
  18. 18.
    N. Suzuki, Vitamins 48, 521 (1974).Google Scholar
  19. 19.
    S. H. Love and J. S. Gots, J. Biol. Chem. 212, 647 (1955).Google Scholar
  20. 20.
    S. H. Love and B. Levenberg, Biochim. Biophys. Acta 35, 367 (1959).Google Scholar
  21. 21.
    N. Chamberlain, N. S. Cutts, and C. Rainbow, J. Gen. Microbiol. 7, 54 (1952).Google Scholar
  22. 22.
    N. Chamberlain and C. Rainbow, J. Gen. Microbiol. 11, 180 (1954).PubMedGoogle Scholar
  23. 23.
    J. D. Woodward and C. Rainbow, J. Gen. Microbiol. 25 141 (1961).PubMedGoogle Scholar
  24. 24.
    F. Ahmad, P. Missimer, and A. G. Moat, Can. J. Biochem. 43, 1723 (1965).Google Scholar
  25. 25.
    J. S. Gots and E. G. Gollub, Proc. Natl. Acad. Sci. USA 43, 826 (1957).Google Scholar
  26. 26.
    E. G. Gollub and J. S. Gots, J. Bacteriol. 78, 320 (1959).Google Scholar
  27. 27.
    T. Shiro, A. Yamanoi, S. Konishi, S. Okumura, and M. Takahashi, Agric. Biol. Chem. (Tokyo) 26, 785 (1962).Google Scholar
  28. 28.
    K. Kinoshita, T. Shiro, A. Yamazaki, I. Kumashiro, T. Takenishi, and T. Tsunoda, Biotechnol. Bioeng 9 329 (1967).Google Scholar
  29. 29.
    R. W. Miller, L. N. Lukens, and J. M. Buchanan, J. Biol. Chem. 234, 1806 (1959).Google Scholar
  30. 30.
    H. T. Huang, Biochemistry 4, 58 (1965).Google Scholar
  31. 31.
    R. Hall, Biochem. Biophys, Acta 61, 530 (1962).Google Scholar
  32. 32.
    B. A. Lowry, M. K. Williams, and I. M. London, J. Biol. Chem. 236, 1442 (1961).Google Scholar
  33. 33.
    L. Shuster, J. Biol. Chem. 238, 3344 (1963).Google Scholar
  34. 34.
    R. Y. Thompson, J. Paul, and J. N. Davidson, Biochem. J. 69, 553 (1958).Google Scholar
  35. 35.
    J. G. Flaks and L. N. Lukens, Methods Enzymol. 6, 52 (1963).Google Scholar
  36. 36.
    P. B. Rowe and J. B. Wyngaarden, J. Biol. Chem. 243, 6373 (1968).Google Scholar
  37. 37.
    K. Mizobuchi and J. M. Buchanan, J. Biol. Chem. 243, 4842 (1968).Google Scholar
  38. 38.
    C. A. H. Patey and G. Shaw, Biochem. J. 135, 543 (1973).PubMedGoogle Scholar
  39. 39.
    J. G. Flaks, M. J. Erwin, and J. M. Buchanan, J. Biol. Chem. 229, 603 (1957).PubMedGoogle Scholar
  40. 40.
    F. Ahmad, P. Missimer, and A. G. Moat, Can. J. Biochem. 43, 1723 (1965).PubMedGoogle Scholar
  41. 41.
    G. J. Litchfield and G. Shaw, J. Chem. Soc. B 1971, 1474.Google Scholar
  42. 42.
    G. Shaw and S. E. Thomas, J. Neurochem. 27, 637 (1976).Google Scholar
  43. 43.
    A. E. Shedlovsky and B. Magasanik, J. Biol. Chem. 237, 3725 (1962).Google Scholar
  44. 44.
    T. Klopotowski, M. Luzzati, and P. Slonimski, Biochem. Biophys. Res. Commun 3, 150 (1960).PubMedGoogle Scholar
  45. 45.
    B. N. Ames, R. G. Martin, and B. J. Garry, J. Biol. Chem. 236, 2019 (1961).Google Scholar
  46. 46.
    R. G. Martin, J. Biol. Chem. 238, 257 (1963).Google Scholar
  47. 47.
    D. W. E. Smith and B. N. Ames, J. Biol. Chem. 240, 3056 (1965).Google Scholar
  48. 48.
    D. W. E. Smith and B. N. Ames, J. Biol. Chem. 239, 1848 (1964).Google Scholar
  49. 49.
    A. Dhainaut, J. L. Montero, B. Rayner, C. Tapiero, and J. L. Imbach, Tetrahedron Lett. 1976 45.Google Scholar
  50. 50.
    R. W. Schayer, Physiol. Rev. 39, 116 (1959).Google Scholar
  51. 51.
    H. R. Matthews and H. Rapoport, J. Am. Chem. Soc. 95, 2297 (1973).Google Scholar
  52. 52.
    G. M. Crowley, Fed. Proc. 19, 309 (1960).Google Scholar
  53. 53.
    G. M. Crowly, J. Biol. Chem. 239, 2593 (1964).Google Scholar
  54. 54.
    J. F. Fernandes, O. Castellani, and M. Plese, Biochem. Biophys. Res. Commun. 3, 679 (1960).PubMedGoogle Scholar
  55. 55.
    J. F. Fernandes, O. Castellani, and M. Plese, Cienc. Cult. (Sao Paulo) 13, 87 (1961); Chem. Abstr. 57, 13071i (1962).Google Scholar
  56. 56.
    J. D. Robinson and J. P. Green, Nature 203, 1178 (1964).Google Scholar
  57. 57.
    J. D. Robinson and J. P. Green, Fed. Proc. 24, 777 (1965).PubMedGoogle Scholar
  58. 58.
    S. H. Snyder and J. Axelrod, Fed. Proc. 24, 774 (1965).PubMedGoogle Scholar
  59. 59.
    S. H. Snyder, J. Axelrod, and H. Bauer, J. Pharmacol. Exp. Ther. 144, 373 (1964).Google Scholar
  60. 60.
    J. D. Wyngaarden, O. W. Jones, and D. M. Ashton, Atli Congr. Lega Int. Reumatismo, 10°, Rome 1, 249 (1961); Chem. Abstr. 61, 9880 (1964).Google Scholar
  61. 61.
    S. G. A. Alivisatos, A. A. Abdel-Latif, F. Ungar, and G. A. Mourkides,. Walure 199, 907 (1963).Google Scholar
  62. 62.
    S. Muraoka, M. Inoue, and H. Yamasaki, Nature 190, 532 (1960).Google Scholar
  63. 63.
    S. Muraoka, M. Sugiyama, and H. Yamasaki, Nature 196, 441 (1962); Biochem. Pharmacol. 14, 27 (1965).PubMedGoogle Scholar
  64. 64.
    W. W. Zorbach and R. S. Tipson (eds.), Synthetic Procedures ira Nucleic Acid Chemistry, Vol. I, Inter-science, New York (1968).Google Scholar
  65. 65.
    J. M. Gulland and T. F. Macrae, J. Chem. Soc. 1933, 662.Google Scholar
  66. 66.
    F. J. Pyman, Chem. Soc. 1910, 1814.Google Scholar
  67. 67.
    E. J. Bourne, P. Finch, and A. G. Nagpurkar,.7. Chem. Soc. Perkin Trans. 1972 2202.Google Scholar
  68. 68.
    E. Bergmann and H. Heimhold, 3. Chem. Soc. 1936, 505.Google Scholar
  69. 69.
    P. Finch and A. G. Nagpurkar, Carbohydr. Res. 49, 275 (1976).Google Scholar
  70. 70.
    J. Jasinka and J. Sokolowski, Roct. Chem. Ann. Soc. Chico. Polon. 43, 855 (1969).Google Scholar
  71. 71.
    W. E. Allesbrook, J. M. Gulland, and L. F. Story, J. Chem. Soc. 1942 232. (1942).Google Scholar
  72. 72.
    R. A. Baxter and F. S. Spring, J. Chem. Soc. 1947, 378.Google Scholar
  73. 73.
    R. A. Baxter, A. C. Mc.Lean, and F. S. Spring, J. Chem. Soc. 1948, 523.Google Scholar
  74. 74.
    G. A. Howard, A. C. McLean, G. I. Newbold, F. S. Spring, and A. R. Todd, J. Chem. Soc. 1949, 232.Google Scholar
  75. 75.
    G. A. Howard, B. Lythgoe, and A. R. ‘Todd, J. Chem. Soc. 1947, 1052.Google Scholar
  76. 76.
    J. Baddiley, J. G. Buchanan, and G. O. Osbourne, J. Chem. Soc. 1958, 3606.Google Scholar
  77. 77.
    J. Baddiley, J. G. Buchanan, F. E. Hardy, and J. Stewart, Proc. Chem. Soc. 1957 149.Google Scholar
  78. 78.
    J. Baddiley, J. G. Buchanan, F. E. Hardy, and J. Stewart, J. Chem. Soc. 1959, 2893.Google Scholar
  79. 79.
    H. Guglielmi and H. Vergin, Liebigs Ann. Chem. 761, 67 (1972).Google Scholar
  80. 80.
    H. Guglielmi, Liebigs Ann. Chem. 1286 (1973).Google Scholar
  81. 81.
    H. M. Kalckar, Fortschr. Chem. Org. Naturst. 9, 389 (1952).Google Scholar
  82. 82.
    W. S. Macnutt, Biochem. J. 50, 384 (1952).Google Scholar
  83. 83.
    R. Ben-Ishai, E. D. Bergmann, and B. E. Volcani, Nature 168, 1124 (1951).PubMedGoogle Scholar
  84. 84.
    A. Windaus, Berichte 42, 758 (1909).Google Scholar
  85. 85.
    F. Ishikawa, A. Nomura, T. Ueda, M. Ikehara, and Y. Mizuno, Chem. Pharm. Bull 8, 380 (1960).Google Scholar
  86. 86.
    J. Braddiley, J. G. Buchanan, D. H. Hayes, and P. A. Smith, J. Chem. Soc. 1958, 3743.Google Scholar
  87. 87.
    H. Bauer, Biochim. Biophys. Acta 30, 219 (1958).PubMedGoogle Scholar
  88. 88.
    H. Bauer, J. Org. Chem. 27, 167 (1962).Google Scholar
  89. 89.
    R. J. Rousseau, L. B. Townsend, and R. K. Robins, Chem. Commun. 1966, 265.Google Scholar
  90. 90.
    G. C. Gallo, C. R. Pasqualucci, P. Radaelli, and G. C. Lancina, J. Org. Chem. 29, 862 (1964).Google Scholar
  91. 91.
    R. J. Rousseau, R. K. Robins, and L. B. Townsend, J. Am. Chem. Soc. 90, 2661 (1968).Google Scholar
  92. 92.
    J. Baddiley, J. G. Buchanan, and G. O. Osbourne, J. Chem. Soc. 1958, 3606.Google Scholar
  93. 93.
    J. A. Montgomery and H. J. Thomas,,7. Am. Chem. Soc. 87, 5442 (1965).Google Scholar
  94. 94.
    L. B. Townsend, R. K. Robins, R. N. Leoppky, and N. J. Leonard, J. Am. Chem. Soc. 86, 5320 (1964).Google Scholar
  95. 95.
    K. R. Darnall and L. B. Townsend, J. Heterocycl. Chem. 3, 371 (1966).Google Scholar
  96. 96.
    N. J. Leonard and R. A. Laursen,, J. Am. Chem. Soc. 85, 2026 (1963).Google Scholar
  97. 97.
    R. P. Panzica and L. B. Townsend, Tetrahedron Lett. 1970, 1013.Google Scholar
  98. 98.
    R. J. Rousseau, R. K. Robins, and L. B. Townsend, J. Heterocycl. Chem. 7, 367 (1970).Google Scholar
  99. 99.
    R. P. Panzica and L. B. Townsend, J. Org. Chem. 36, 1594 (1971).Google Scholar
  100. 100.
    J. C. Reepmeyer, K. L. Kirk, and L. A. Cohen, Tetrahedron Lett. 1975, 4107.Google Scholar
  101. 101.
    P. C. Srivastava, M. V. Pickering, L. B. Allen, D. G. Streeter, M. T. Campbell, J. T. Witkowski, R. W. Sidwell, and R. K. Robins, J. Med. Chem. 20, 256 (1977).PubMedGoogle Scholar
  102. 102.
    P. D. Cook, R. J. Rousseau, A. M. Mian, P. Dea, R. B. Meyer, and R. K. Robins, J. Am. Chem. Soc. 98, 1492 (1976).Google Scholar
  103. 103.
    L. E. Cavalieri, J. F. Tinker, and G. B. Brown, 3. Am. Chem. Soc. 71, 3973 (1949).Google Scholar
  104. 104.
    M. G. Sevag and T. Yokota: unpublished work cited in J. M. Buchanan and R. W. Miller,.7. Biol. Chem. 237, 485 (1962).Google Scholar
  105. 105.
    D. V. Wilson, Ph.D. thesis, University of Bradford (1967).Google Scholar
  106. 106.
    Y. Suzuki and S. Tatabe, Japanese Patent 7, 362, 706 (1973).Google Scholar
  107. 107.
    B. R. Baker and J. P. Joseph,, J. Am. Chem. Soc. 77, 15 (1955).Google Scholar
  108. 108.
    A. M. Michelson, The Chemistry of Nucleosides and Nucleotides, p.20, Ref. 74, Academic Press, New York, (1963).Google Scholar
  109. 109.
    L. B. Townsend and R. K. Robins, J. Am. Chem. Soc. 85, 243 (1963).Google Scholar
  110. 110.
    E. Shaw, J. Am. Chem. Soc. 80, 3899 (1958).Google Scholar
  111. 111.
    E. Shaw, J. Am. Chem. Soc. 81, 6021 (1959).Google Scholar
  112. 112.
    J. A. Montgomery, K. Hewson, S. J. Clayton, and H. J. Thomas, J. Org. Chem., 31, 2202 (1966).Google Scholar
  113. 113.
    E. Shaw, J. Am. Chem. Soc. 83, 4770 (1961).Google Scholar
  114. 114.
    R. W. Miller, L. N. Lukens, and J. M. Buchanan, J. Biol. Chem. 234, 1806 (1959).Google Scholar
  115. 115.
    C. M. Baugh and E. N. Shaw, Biochim. Biophys. Acta 114, 213 (1966).PubMedGoogle Scholar
  116. 116.
    J. A. Montgomery and H. J. Thomas, J. Org. Chem. 28, 2304 (1963).Google Scholar
  117. 117.
    M. A. Stevens, H. W. Smith, and G. B. Brown, J. Am. Chem. Soc. 81, 1734 (1959).Google Scholar
  118. 118.
    A. C. Bratton and E. K. Marshall, J. Biol. Chem. 128, 537 (1939).Google Scholar
  119. 119.
    R. Ben-Ishai, E. D. Bergmann, and B. E. Volcani, Nature 168, 1124 (1951).PubMedGoogle Scholar
  120. 120.
    J. G. Buchanan, C. A. Dekker, and A. G. Long, J. Chem. Soc. 1950, 3162.Google Scholar
  121. 121.
    C. S. Hanes and F. A. Isherwood, Nature 164, 1107 (1949).PubMedGoogle Scholar
  122. 122.
    J. A. Montgomery and H. J. Thomas, J. Med. Chem. 15, 1334 (1972).Google Scholar
  123. 123.
    R. B. Meyer, D. A. Shuman, R. K. Robins, J. P. Miller, and L. N. Simon, J. Med. Chem. 16, 1319 (1973).Google Scholar
  124. 124.
    H. U. Begmeyer, G. Michal, M. Nelboeck-Hochstetter, H. Stork, and G. Weimann, German Patent 2, 026, 040 (1971).Google Scholar
  125. 125.
    M. Kawana, G. A. Ivanovics, R. J. Rousseau, and R. K. Robins, J. Med. Chem. 14, 841 (1972).Google Scholar
  126. 126.
    G. A. Ivanovics, R. J. Rousseau, M. Kawana, P. C. Strivastava, and R. K. Robins, J. Org. Chem. 39, 3651 (1974).Google Scholar
  127. 127.
    P. C. Strivastava, A. R. Newman, T. R. Matthews, and R. K. Robins, J. Med. Chem. 18, 1237 (1975).Google Scholar
  128. 128.
    P. C. Srivastava, A. R. Newman, and R. K. Robins, J. Carbohydr. Nucleosides Nucleotides 3, 327 (1975).Google Scholar
  129. 129.
    C. A. Lobry de Bruyn and F. H. Van Leent, Rec. Tray. Chim. 14, 134 (1895).Google Scholar
  130. 130.
    G. Shaw and R. N. Warrener, Proc. Chem. Soc. 1958, 193.Google Scholar
  131. 131.
    G. Shaw, R. N. Warrener, D. N. Butler, and R. K. Ralph, J. Chem. Soc. 1959, 1648.Google Scholar
  132. 132.
    N. J. Cusack, PhD. thesis, University of Bradford (1971).Google Scholar
  133. 133.
    N. J. Cusack, B. J. Hildick, D. H. Robinson, P. W. Rugg, and G. Shaw, J. Chem. Soc. Perkin Trans. 1 1973, 1720.Google Scholar
  134. 134.
    J. Baddiley, J. G. Buchanan, R. Hodges, and J. F. Prescott, J. Chem. Soc. 1957, 4769.Google Scholar
  135. 135.
    G. Shaw and D. V. Wilson, Proc. Chem. Soc. 1961, 381.Google Scholar
  136. 136.
    G. Shaw and D. V. Wilson, J. Chem. Soc. 1962, 2937.Google Scholar
  137. 137.
    R. Carrington, G. Shaw, and D. V. Wilson, Tetrahedron Lett. 1964, 2861.Google Scholar
  138. 138.
    R. Carrington, G. Shaw, and D. V. Wilson, J. Chem. Soc. 1965, 6864.Google Scholar
  139. 139.
    R. K. Ralph and G. Shaw, J. Chem. Soc. 1956, 1877.Google Scholar
  140. 140.
    N. J. Cusack and G. Shaw, Chem. Commun. 1970, 114.Google Scholar
  141. 141.
    G. Shaw and N. J. Cusack, U.S. Patent 3,816, 399 (1974).Google Scholar
  142. 142.
    G. Shaw, P. S. Thomas, C. A. Patey, and S. E. Thomas, J. Chem. Soc. Perkin. Trans. 1979, 1415.Google Scholar
  143. 143.
    P. S. Thomas, PhD. thesis, University of Bradford (1977). •Google Scholar
  144. N. J. Cusack, D. H. Robinson, P. W. Rugg, G. Shaw, and R. Lofthouse, J. Chem. Soc. Perkin Trans. 1 1974 73.Google Scholar
  145. 145.
    N. J. Cusack, P. W. Rugg, and G. Shaw, Chem. Comm. 1971, 1971.Google Scholar
  146. 146.
    G. Shaw and G. Mackenzie, J. Chem. Res. (S) 1980, 254; (M) 1980, 3201.Google Scholar
  147. 147.
    G. Mackenzie and G. Shaw, Chem. Commun. 1976, 453.Google Scholar
  148. 148.
    D. H. Robinson and G. Shaw, Experientia 28, 763 (1972).Google Scholar
  149. 149.
    D. H. Robinson and G. Shaw, J. Chem Soc. Perkin Trans. 1 1974, 774.Google Scholar
  150. 150.
    G. Mackenzie, G. Shaw, and D. H. Robinson, J. Chem. Soc. Perkin Trans. 1 1977, 1094.Google Scholar
  151. 151.
    G. Mackenzie and G. Shaw, Chem. Commun. 1975, 47.Google Scholar
  152. 152.
    D. Horton, D. C. Baker, and S. S. Kokrady, Ann. N.Y. Acad. Sci. 225, 131 (1975).Google Scholar
  153. 153.
    D. C. Baker, A. Ducruix, D. Horton, and C. Pascard-Billy, Chem. Commun. 1974, 729.Google Scholar
  154. 154.
    B. A. Otter, E. A. Falco, and J. J. Fox, J. Org. Chem. 33, 3593 (1968).Google Scholar
  155. 155.
    B. A. Otter and J. J. Fox, J. Am. Chem. Soc. 89, 3663 (1967).Google Scholar
  156. 156.
    B. A. Otter, E. A. Falco, and J. J. Fox, J. Org. Chem. 34, 1390 (1969).Google Scholar
  157. 157.
    B. A. Otter, E. A. Falco, and J. J. Fox, J. Org. Chem. 34, 2636 (1969).PubMedGoogle Scholar
  158. 158.
    E. Shaw, J. Biol. Chem. 185, 439 (1950).Google Scholar
  159. 159.
    M. Okutsu and A. Yamazaki, Nucleic Acids Res. 3, 231 (1976).PubMedGoogle Scholar
  160. 160.
    A. Yamazaki, I. Kumashiro, and T. Takenishi J. Org. Chem. 32, 3258 (1967).Google Scholar
  161. 161.
    A. Yamazaki, I. Kumashiro, and T. Takenishi, J. Org. Chem. 32, 3032 (1967).PubMedGoogle Scholar
  162. 162.
    I. Kumashiro, A. Yamazaki, T. Meguro, T. Takenishi, and T. Tsunoda, Biotechnol. Bioeng. 10, 303 (1968).Google Scholar
  163. 163.
    A. Yamazaki, I. Kumashiro, and T. Takenishi, J. Org. Chem. 32, 1825 (1967).PubMedGoogle Scholar
  164. 164.
    A. Yamazaki, M. Okutsu, and Y. Yamada, Nucleic Acids Res. 3, 251 (1976).PubMedGoogle Scholar
  165. 165.
    M. Okutsu and A. Yamazaki, Nucleic Acids Res. 3, 237 (1976).PubMedGoogle Scholar
  166. 166.
    A. Yamazaki, I. Kumashiro, T. Takenishi, and M. Ikehara, Chem. Pharm. Bull. 16, 2172 (1968).Google Scholar
  167. 167.
    M. Greenhalgh, G. Shaw, D. V. Wilson, and N. J. Cusack, J. Chem. Soc. C 1969, 2198.Google Scholar
  168. 168.
    A. Yamazaki, T. Furukawa, M. Akiyama, M. Okutsu, I. Kumashiro, and M. Ikehara, Chem. Pharm. Bull. 21, 692 (1973).Google Scholar
  169. 169.
    K. Suzuki and I. Kumashiro, US Patent 2, 450, 693 (1969).Google Scholar
  170. 170.
    R. J. Rousseau and L. B. Townsend, J. Org. Chem. 33, 2828 (1968).PubMedGoogle Scholar
  171. 171.
    R. Marumoto, Y. Yoshioka, O. Miyashita, S. Shima, K. Imai, K. Kawaze, and M. Honjo, Chem. Pharm. Bull. 23, 759 (1975).PubMedGoogle Scholar
  172. 172.
    G. Barnathan, T. H. Dinh, A. Kolb, and J. Igolen, J. Med. Chim. Ther. 11, 67 (1976).Google Scholar
  173. 173.
    J. Igolen, T. H. Dinh, A. Kolb, and C. Perreur, J. Med. Chim. Ther. 7, 207 (1972).Google Scholar
  174. 174.
    B. Giles, T. H. Dinh, A. Kolb, and J. Igolen, C.R. Acad. Sci. Ser. C. 274, 2192 (1972).Google Scholar
  175. 175.
    A. Kolb, C. Gouyette, T. H. Dinh, and J. Igolen, Tetrahedron 31, 2914 (1975).Google Scholar
  176. 176.
    G. Shaw and D. N. Butler, J. Chem. Soc. 1959, 4040.Google Scholar
  177. 177.
    K. Suzuki, T. Meguro, I. Kumashiro, and T. Takenishi, Abstr. 21st Ann. Meet. Chem. Jn. No. 3, 1775 (1968).Google Scholar
  178. 178.
    A. Yamazaki, I. Kumashiro, and T. Takenishi, Chem. Pharm. Bull. 17, 1128 (1969).Google Scholar
  179. 179.
    D. E. Cowley, I. D. Jenkins, J. K. MacLeod, R. E. Simmons, D. S. Letham, M. M. Wilson, and C. W. Parker, Tetrahedron Lett. 1975, 1015.Google Scholar
  180. 180.
    G. Shaw, B. M. Smallwood, and D. V. Wilson, J. Chem. Soc. C 1966 921.Google Scholar
  181. 181.
    G. Shaw and D. V. Wilson, Proc. Chem. Soc. 1964, 231.Google Scholar
  182. 182.
    P. D. Cook, R. J. Rousseau, A. M. Mian, P. Dea, R. B. Meyer, and R. K. Robins, J. Am. Chem. Soc. 98, 1492 (1976).PubMedGoogle Scholar
  183. 183.
    P. C. Srivastava, G. A. Ivanovics, R. J. Rousseau, and R. K. Robins, J. Org . Chem. 40, 2920 (1975).PubMedGoogle Scholar
  184. 184.
    Y. F. Shealy, R. F. Struck, L. B. Holum, and J. A. Montgomery, J. Org . Chem. 26, 2396 (1961).Google Scholar
  185. 185.
    R. J. Rousseau and G. Ivanovics, US Patent 3, 803, 126 (1974).Google Scholar
  186. 186.
    L. N. Lukens and J. M. Buchanan, J. Biol. Chem. 234, 1791 (1959).PubMedGoogle Scholar
  187. 187.
    G. Shaw and D. V. Wilson, J. Chem. Soc. 1963, 1077.Google Scholar
  188. 188.
    G. Shaw and D. V. Wilson, Proc. Chem. Soc. 1962, 115.Google Scholar
  189. 189.
    I, E. Burrows, G. Shaw, and D. V. Wilson, J. Chem. Soc. C 1968 40.Google Scholar
  190. 190.
    I. E. Burrows and G. Shaw, J. Chem. Soc. C 1969, 1088.Google Scholar
  191. 191.
    P. C. Srivastava, R. W. Mancuso, R. J. Rousseau, and R. K. Robins, J. Med. Chem. 17, 1207 (1974).PubMedGoogle Scholar
  192. 192.
    J. A. Montgomery and H. J. Thomas, J. Med. Chem. 15, 182 (1972).PubMedGoogle Scholar
  193. 193.
    G. J. Litchfield and G. Shaw, Chem. Commun. 1965, 564.Google Scholar
  194. 194.
    N. J. Cusack, G. Shaw, and G. J. Litchfield, J. Chem. Soc. C 1971, 1501.Google Scholar
  195. 195.
    N. J. Cusack, G. J. Litchfield, and G. Shaw, Chem. Commun. 1967, 799.Google Scholar
  196. 196.
    T. Brown, K. Kadir, G. Shaw, and G. Mackenzie, J. Chem. Soc. Perkin Trans. 1 1979 3107.Google Scholar
  197. 197.
    M. Franks, C. P. Green, G. Shaw, and G. J. Litchfield, J. Chem. Soc. C 1966, 2270.Google Scholar
  198. 198.
    G. Shaw, in The Purine - Theory and Experiment (E.D. Bergmann and B. Pullman eds.), Israel Academy of Sciences and Humanities, Jerusalem (1972).Google Scholar
  199. 199.
    G. Shaw, D. V. Wilson, and C. P. Green, J. Chem. Soc. 1964, 2650.Google Scholar
  200. 200.
    A. A. Abel-Latif and S. S. A. Alivisatos, J. Biol. Chem. 236, 2710 (1961).Google Scholar
  201. 201.
    S. G. A. Alivisatos, Fed. Proc. 17, 180 (1958).Google Scholar
  202. 202.
    S. G. A. Alivisatos, Nature 181, 271 (1958).Google Scholar
  203. 203.
    S. G. A. Alivisatos, Nature 183, 1034 (1959).Google Scholar
  204. 204.
    S. G. A. Alivisatos, Fed. Proc. 24, 769 (1965).Google Scholar
  205. 205.
    S. G. A. Alivisatos, F. Ungar, L. Lukacs, and L. LaMantia, J. Biol. Chem. 235, 1742 (1960).PubMedGoogle Scholar
  206. 206.
    S. G. A. Alivisatos, L. LaMantia, and B. L. Matijevitch, Biochim. Biophys. Acta 58, 201 (1962).Google Scholar
  207. 207.
    S. G. A. Alivisatos and D. W. Woolley, J. Am. Chem. Soc. 77, 1065 (1955).Google Scholar
  208. 208.
    S. G. A. Alivisatos and D. W. Woolley, J. Biol. Chem. 221, 651 (1956).PubMedGoogle Scholar
  209. 209.
    S. G. A. Alivisatos, L. LaMantia, F. Ungar, and B. L. Matijevitch, J. Biol. Chem. 237, 1212 (1962).PubMedGoogle Scholar
  210. 210.
    S. G. A. Alivisatos, L. LaMantia, F. Ungar, and B. Savich, Biochim. Biophys. Acta 30, 660 (1958).Google Scholar
  211. 211.
    M. Okutsu, A. Yamazaki, and K. Suzuki, Japanese Patent 78, 169 (1973).Google Scholar
  212. 212.
    T. L. Perry, S. Hansen, H. P. Bar, and L. MacDougall, Science 152, 776 (1966).Google Scholar
  213. 213.
    H. Yoshioka, K. Nakatsu, M. Hayashi, and K. Mizuno, Tetrahedron Lettr. 1975, 4031.Google Scholar
  214. 214.
    M. Hayashi, T. Hirano, M. Yaso, K. Mizuno, and T. Ueda, Chem. Pharm. Bull. 23, 245 (1975).Google Scholar
  215. 215.
    E. Schipper and A. R. Day, J. Am. Chem. Soc. 74, 350 (1952).Google Scholar
  216. 216.
    K. Mizuno and T. Miyazaki, Chem. Pharm. Bull. 24, 2248 (1976).Google Scholar
  217. 217.
    K. Mizuno, S. Yaginuma, M. Hayashi, M. Takada, and N. Muto, J. Fern. Tech. (Jpn) 53, 609 (1975).Google Scholar
  218. 218.
    F. B. Power and T. Callan, J. Chem. Soc. 99, 1993 (1911).Google Scholar
  219. 219.
    C. Djerassi, J. Herran, H. N. Khastjir, B. Riniker, and J. Roma, J. Org. Chem. 21, 1510 (1956).Google Scholar
  220. 220.
    A. Aebi, Heir. Chim. Acta 39, 1495 (1956).Google Scholar
  221. 221.
    C. Djerassi, C. Bankiewicz, A. L. Kapoor, and B. Riniker, Tetrahedron 2, 168a (1958).Google Scholar
  222. 222.
    S. Raman, J. Reddy, and W. N. Lipscomb, Acta Crystallogr. 16, 364 (1963).Google Scholar
  223. 223.
    S. Raman, J. Reddy, W. N. Lipscomb, A. L. Kapoor, and C. Djerassi, Tetrahedron Lett. 1962, 357.Google Scholar
  224. 224.
    R. P. Panzica and L. B. Townsend, J. Am. Chem. Soc. 95, 8737 (1973).PubMedGoogle Scholar
  225. 225.
    K. Maeda, T. Osato, and H. Umezawa, J. Antibiot. 6A, 182 (1953).PubMedGoogle Scholar
  226. 226.
    R. J. Rousseau, R. K. Robins, and L. B. Townsend, J. Heterocycl. Chem. 4, 311 (1967).Google Scholar
  227. 227.
    J. Fernandez-Bolanos, M. R. Jimerez, J. F. Mota, and M. J. Martin, An. Quim. 69, 771 (1973).Google Scholar
  228. 228.
    E. de Clercq, M. Luczak, J. C. Reepmeyer, K. L. Kirk, and L. A. Cohen, Life Sci 17, 187 (1975).Google Scholar
  229. 229.
    A. Yamazaki, T. Furukawa, and I. Kumashiro, U.S. Patent 3,678, 030 (1972).Google Scholar
  230. 230.
    K. Sakaguchi, M. Tsujino, K. Mizuno, K. Hayano, and N. Ishida, J. Antibiot. 28, 798 (1975).PubMedGoogle Scholar
  231. 231.
    K. Sakaguchi, M. Tsujino, M. Yoashizawa, K. Mizuno, and K. Hayano, Cancer Res. 35, 1643 (1975).PubMedGoogle Scholar
  232. 232.
    K. Sakaguchi, M. Tsujino, K. Mizuno, and K. Hayano, Jpn. J. Genet. 51, 61 (1976).Google Scholar
  233. 233.
    G. P. Ellis, C. Epstein, C. Fitzmaurice, L. Goldberg, and G. H. Lord, J. Pharm. Pharmacol. 16, 400 (1964).PubMedGoogle Scholar
  234. 234.
    N. A. Petruska, Chem. Abstr. 81, 57 (1974).Google Scholar
  235. 235.
    E. Bourne, P. Finch, and A. G. Nagpurkar, Carbohydr. Res. 29, 492 (1973).PubMedGoogle Scholar
  236. 236.
    A. Jung and H. Guglielmi,chwr(133) Physiol. Chem. 358, 1463 (1977).Google Scholar
  237. 237.
    G. H. Beavan, E. R. Holiday, E. A. Johnson, B. Ellis, P. Mamalis, V. Petrow, and B. Sturgeon, J. Pharm. Pharmacol. 1, 957 (1949).Google Scholar
  238. 238.
    G. Cooley, B. Ellis, P. Mamalis, V. Petrow, and B. Sturgeon, J. Pharm. Pharmacol. 2, 579 (1950).PubMedGoogle Scholar
  239. 239.
    N. G. Brink, F. W. Holly, C. H. Shunk, E. W. Peel, J. J. Cahill, and K. Folkers, J. Am. Chem. Soc. 72, 1866 (1950).Google Scholar
  240. 240.
    J. G. Buchanan, A. W. Johnson, J. A. Mills, and A. R. Todd, J. Chem. Soc. 1950, 2845.Google Scholar
  241. 241.
    J. G. Buchanan, A. W. Johnson, J. A. Mills, and A. R. Todd, Chem. Ind. (London) 1950 426.Google Scholar
  242. 242.
    R. B. Woodward, Pure Appi. Chem. 33, 145 (1973).Google Scholar
  243. 243.
    P. N. Preston, Chem. Rev. 74, 279 (1974).Google Scholar
  244. 244.
    D. R. Rao and L. M. Lerner, J. Org . Chem. 37, 3741 (1972).PubMedGoogle Scholar
  245. 245.
    T. Kishikawa, Chem. Pharm. Bull. 17, 2492 (1969).Google Scholar
  246. 246.
    H. Ogura, H. Takahashi, K. Takeda, M. Sakaguchi, N. N.mura, and H. Saka, Hukusokan Kagaku Toronkai Koen Yoshishu, 8th Tokyo, p. 154 (1975).Google Scholar
  247. 247.
    E. E. Rengevich, V. P. Cheretskii, and N. G. Burlii, Ukr. Khim. Zh. 41, 1104 (1975).Google Scholar
  248. 248.
    G. Alonso, G. Garcia-Munoz, F. G. De las Hera, R. Madronero, and M. Stud, J. Carbohydr. Nucleosides Nucleotides 1, 381 (1974).Google Scholar
  249. 249.
    B. L. Kam and J. L. Imbach, J. Carbohydr. Nucleosides Nucleotides 1, 287 (1974).Google Scholar
  250. 250.
    G. R. Revankar and L. B. Townsend, J. Heterocycl. Chem. 7, 117 (1970).Google Scholar
  251. 251.
    G. R. Revankar and L. B. Townsend, J. Heterocycl. Chem. 7, 1329 (1970).Google Scholar
  252. 252.
    J. Jasinska and J. Sokolowski, Rocz. Chem. Ann. Soc. Chico. Polon. 44, 1913 (1970).Google Scholar
  253. 253.
    G. J. Litchfield and G. Shaw, J. Chem. Soc. C 1971, 817.Google Scholar
  254. 254.
    L. B. Townsend, in Synthetic Procedures in Nucleic Acid Chemistry (W. W. Zorbach and R. S. Tipson, eds.), Vol. II, Wiley — Interscience, New York (1973).Google Scholar
  255. 255.
    L. A. Mulligan, G. Shaw, and P. J. Staples, J. Chem. Soc. C 1971, 1585.Google Scholar
  256. 256.
    C. D. Jardetsky, J. Am. Chem. Soc. 84, 62 (1962).Google Scholar
  257. 257.
    M. Karplus, J. Chem. Phys. 30, 11 (1959).Google Scholar
  258. 258.
    L. D. Hall, L. Hough, K. A. McLauchlan, and K. Pachler, Chem. Ind. (London) 1962, 1465.Google Scholar
  259. 259.
    N. J. Leonard and R. A. Laursen, J. Am. Chem. Soc., 85, 2026 (1963).Google Scholar
  260. 260.
    A. D. Martinez and W. W. Lee, J. Org . Chem. 34, 416 (1969).Google Scholar
  261. 261.
    T. Nishimura and B. Shimuzu, Chem. Pharm. Bull. 13, 803 (1965).PubMedGoogle Scholar
  262. 262.
    G. T. Rodgers and T. L. V. Ulbricht, J. Chem. Soc. 1968, 1929.Google Scholar
  263. 263.
    J. A. Montgomery, Carbohyd. Res. 33, 184 (1974).Google Scholar
  264. 264.
    Y. H. Pan, R. K. Robins, and L. B. Townsend, J. Heterocycl. Chem. 4, 246 (1967).Google Scholar
  265. 265.
    B. Rayner, C. Tapiero, and J. L. Imbach, J. Heterocycl. Chem. 10, 417 (1973).Google Scholar
  266. 266.
    J. L. Imbach, J. L. Barascut, B. L. Kam, and C. Tapiero, Tetrahedron Lett. 1974, 129.Google Scholar
  267. 267.
    J. L. Imbach, Ann. N.Y. Acad. Sci. 255, 177 (1975).Google Scholar
  268. 268.
    T. L. Ulbricht, T. R. Emerson, and R. J. Swan, Tetrahedron Lett. 1966, 1561.Google Scholar
  269. A1.
    K. Kadir, G. Mackenzie, and G. Shaw, J. Chem. Soc. Perkin Trans. 1980, 2304.Google Scholar
  270. A2.
    M. Sakaguchi, M. W. Webb, and K. C. Agrawal, J. Med. Chem. 25, 1339 (1982).Google Scholar
  271. A3.
    M. Sakaguchi, C. A. Larraquette, and K. C. Agrawal, J. Med. Chem. 26, 20 (1983).Google Scholar
  272. A4.
    J. C. Reepmeyer, K. L. Kirk, and L. A. Cohen, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Vol. I, p. 217, Wiley, New York. (1978).Google Scholar
  273. A5.
    P. D. Cook and R. K. Robins, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Vol. I, p. 211, Wiley, New York (1978)Google Scholar
  274. A6.
    P. C. Wyss and U. Fischer, Heir. Chico. Acta 61, 3149 (1978).Google Scholar
  275. A7.
    P. C. Wyss, P. Schonholzer, and W. Arnold, Heir. Chico. Acta. 63, 1353 (1980).Google Scholar
  276. A8.
    J. J. K. Novack, Collect. Czech. Chem. Commun. 43, 1511 (1978).Google Scholar
  277. A9.
    P. C. Srivastava, R. J. Rousseau, and R. K. Robins, Chem. Commun. 1977, 151.Google Scholar
  278. A10.
    T. Itaya, H. Matsumoto, and T. Watanabe, Chem. Pharm. Bull., 30, 86 (1982).Google Scholar
  279. All. T. G. Lopez, R. Herranz, and J. I. Andres, J. Chem. Soc. Perkin. Trans. 1983, 2303.Google Scholar
  280. Al2. G. Mackenzie and G. Shaw, J. Chem. Res. (S) 1977, 184, J. Chem. Res. (M) 1977, 2145.Google Scholar
  281. A13.
    G. Mackenzie and G. Shaw, J. Chem. Soc. Perkin Trans. 1 1978, 1381.Google Scholar
  282. A14.
    J. P. Ferris, S. S. Badesha, W. Y. Ren, H. L. Huang, and R. J. Sorcek, J. Chem. Soc. Chem. Commun. 1981, 110.Google Scholar
  283. A15.
    M. S. Poonian and E. F. Nowoswiat, J. Org. Chem. 45, 203 (1980).Google Scholar
  284. A16.
    M. Bobek and J. Farkas, Collect. Czech. Chem. Commun. 34, 247 (1968).Google Scholar
  285. A17.
    F. Garcia Gonzalez, J. A. G. Perez, J. I. F. Garcia-Hierro, and J. F. Bolanos, An. Quim 75, 1002 (1979).Google Scholar
  286. A18.
    J. F. Mota, P. A. Bravo, F. R. Vincente, J. I. F. Garcia-Hierro, and J. A. Perez, Nucleosides Nucleotides 3, 115 (1984).Google Scholar
  287. A19.
    A. Yamazaki and M. Okutsu, J. Heterocycl. Chem. 1978, 353.Google Scholar
  288. A20.
    G. Shaw, Ann. Rep. Chem. Soc. 76, 448 (1979).Google Scholar
  289. A21.
    G. Shaw, Ann. Rep. Chem. Soc. 77, 299 (1980).Google Scholar
  290. A22.
    G. Shaw, in Comprehensive Heterocyclic Chemistry (A. R. Katritzky and C. W. Rees, eds.) Vol. 5, p. 500, Pergamon Press, Elmsford, N.Y. (1984).Google Scholar
  291. A23.
    Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Wiley — Interscience, New York (1978).Google Scholar
  292. A24.
    K. Omura, R. Marumoto, and Y. Furukawa, Chem. Pharm. Bull. 29, 1870 (1981).Google Scholar
  293. A25.
    A. F. Cook and R. T. Bartlett, J. Org. Chem. 45, 4020 (1980).Google Scholar
  294. A26.
    S. Nakatsuka, T. Ohgi, and T. Goto, Tetrahedron Lett. 1978, 2579.Google Scholar
  295. A27.
    T. Fujii, T. Saito, and T. Nakasaka, Chem. Commun. 1980, 758.Google Scholar
  296. A28.
    T. Saito and T. Fujii, Chem. Commun. 1979, 135.Google Scholar
  297. A29.
    P. C. Srivastava, R. J. Rousseau, and R. K. Robins, Chem. Commun. 1977, 151.Google Scholar
  298. A30.
    G. Shaw, P. S. Thomas, C. A. H. Patey, and S. E. Thomas, J. Chem. Soc. Perkin Trans. 1979, 1415.Google Scholar
  299. A31.
    M. T. Garcia-Lopez and R. Herranz, J. Org. Chem. 19, 233 (1982).Google Scholar
  300. A32.
    T. G. Lopez, R. Herranz, and J. I. Andres, J. Chem. Soc. Perkin Trans. 1 1983, 2303.Google Scholar
  301. A33.
    R. W. Humble, G. Mackenzie, and G. Shaw, Nucleosides Nucleotides 4, 281 (1985).Google Scholar
  302. A34.
    R. W. Humble, G. Mackenzie, and G. Shaw, VIth Int. Round Table. Nucleosides, Nucleotides and the Biological Applications, p. 107 (1984).Google Scholar
  303. A35.
    H. Tanaka, J. Takachachi, H. Togashi, and T. Ueda, Chem. Pharm. Bull. 26, 3322 (1978).Google Scholar
  304. A36.
    G. Mackenzie, G. Shaw, and H. A. Wilson, Nucleosides Nucleotides 3, 339 (1984).Google Scholar
  305. A37.
    M. Ueda and H. Tanaka, Japanse Patent 79,32,494 (1979); Chem. Abstr. 91, 74853 (1979).Google Scholar
  306. A38.
    K. Kikugawa, Chem. Pharm. Bull. 25, 2181 (1977).Google Scholar
  307. A39.
    K. Fukukawa, S. Shuto, T. Hirano, and T. Ueda, Chem. Pharm. Bull. 32, 1644 (1984); 34, 3653 (1986).Google Scholar
  308. A40.
    G. R. Revankar and R. K. Robins, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Vol. 1, p. 207, Wiley, New York (1978).Google Scholar
  309. A41.
    I. Kiyoshi and S. Saburo, Heterocycles 1979, 333.Google Scholar
  310. A42.
    U. Dahn, H. Hagenmaier, H. Hohne, W. A. Konig, G. Wolf, and H. Zahner, Arch. Microbiol. 107, 249 (1976).Google Scholar
  311. A43.
    M. Uramoto, K. Konibata, K. Isono, T. Higashijima, T. Miyazawa, E. E. Jenkins, and J. A. McCloskey, Tetrahedron Lett. 21, 3395 (1980).Google Scholar
  312. A44.
    W. A. Konig, W. Hass, W. Dehler, H. P. Fiedler, and H. Zahner, Liebigs Ann. Chem. 1980, 622.Google Scholar
  313. A45.
    H. Hagenmaier, A. Keckeisen, H. Zahner, and W. A. Konig, Liebigs Ann. Chem. 1979, 1494.Google Scholar
  314. A46.
    M. Uramoto, K. Kobinata, K. Isono, T. H. Higashijima, T. Miyazawa, E. E. Jenkins and J. A. McCloskey, Tetrahedron 38, 1599 (1982).Google Scholar
  315. A47.
    H. Hagenmaier, A. Keckeisen, W. Dehler, H.P. Fiedler, and W. A. Konig, Liebigs Ann. Chem. 1981, 1018.Google Scholar
  316. A48.
    W. Hass and W. A. Konig, Liebigs Ann. Chem. 1982, 1615.Google Scholar
  317. A49.
    R. Rathman, W. A. Konig, H. Schmalle, G. Carlsson, R. Bosch, H. Hagenmaier, and W. Winter, Liebigs Ann. Chem. 1984, 1216.Google Scholar
  318. A50.
    J. P. Perris, V. R. Rao, and T. A. Newton, J. Org. Chem. 44, 4378 (1979).Google Scholar
  319. A51.
    P. B. Seghal, J. E. Darnell, and I. Tam, Cell 9, 473 (1976).Google Scholar
  320. A52.
    P. B. Seghal and I. Tam, Biochem. Pharmacol. 27, 2475 (1978).Google Scholar
  321. A53.
    K. Ruf and W. Pfleiderer, VIth Int. Round Table. Nucleosides and Nucleotides, p. 111 (1984).Google Scholar
  322. A54.
    J. L. Barascut, B. L. Kam, and J. L. Imbach, J. Heterocycl. Chem. 14, 1305 (1977).Google Scholar
  323. A55.
    J. L. Barascut, B. L. Kam, and J. L. Imbach, Bull. Soc. Chim. Fr. 11–12, 1983 (1976).Google Scholar
  324. A56.
    E. Cuny, F. W. Lichtenthaler, and U. John, Chem. Ber. 114, 1624 (1981).Google Scholar
  325. A57.
    B. L. Kam, J. L. Barascut, and J. L. Imbach, Carbohydr. Res. 78, 285 (1980).Google Scholar
  326. A58.
    T. N. Sokolova, V. E. Shevchenko, and M. N. Preobrazhenskaya, Carbohydr. Res. 83, 249 (1980).Google Scholar
  327. A59.
    T. Sokolova, I. V. Yartseva, V. E. Shevchenko, and M. N. Preobrazhenskaya, Khim. Geterotsikl. Soedin. 6, 767 (1981).Google Scholar
  328. A60.
    M. N. Preobrazhenskaya, I. V. Yartseva, and L. V. Ektova, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Vol. 2, p. 721, Wiley, New York (1978).Google Scholar
  329. A61.
    V. L. Mukhanov, T. N. Sokolova, T. G. Nikolaeva, Y. V. Dobrynin, and M. N. Preobrazhenskaya, Khim. Farm. Zh. 13, 47 (1979).Google Scholar
  330. A62.
    M. N. Preobrazhenskaya, I. V. Yartseva, and L. V. Ektova, in Nucleic Acid Chemistry (L. B. Townsend and R. S. Tipson, eds.), Vol. 2, p. 725, Wiley, New York (1978).Google Scholar
  331. A63.
    C. K. Chu, F. M. El-Kabbani, and B. B. Thompson, Nucleosides Nucleotides 3, 1 (1984).Google Scholar
  332. A64.
    D. W. Jones, T. T. Mokoena, D. H. Robinson, and G. Shaw, Tetrahedron 37, 2995 (1981).Google Scholar
  333. A65.
    G. Mackenzie and G. Shaw, Chem. Commun. 1977, 753.Google Scholar
  334. A66.
    H. Tanaka, H. Hayakawa, and T. Miyasaka, Chem. Pharm. Bull. 30, 1117 (1982).Google Scholar
  335. A67.
    T. Brown, K. Kadir, G. Mackenzie, and G. Shaw, J. Chem. Soc. Perkin. Trans. 1 1979, 3107.Google Scholar
  336. B1.
    D. Ewing, R. W. Humble, A. Holy, G. Mackenzie, G. Shaw, and I. Vatruba, Nucleosides Nucleotides 8, 1177 (1989).Google Scholar
  337. B1a.
    D. Betbeder and D. W. Hutchinson, Nucleosides Nucleotides 9, 569 (1990).Google Scholar
  338. B2.
    J. P. Ferris, B. Devadas, C. H. Huang, and W.-Y. Ren,. 7. Org. Chem. 50, 747 (1985).Google Scholar
  339. B2a.
    B. Bhat, M. P. Groziak, and N. J. Leonard, J. Am. Chem. Soc. 112, 4891 (1990).Google Scholar
  340. B3.
    A. Grouiller, G. Mackenzie, B. Najib, G. Shaw and D. Ewing, JCS Chem. Commun. 671 (1988).Google Scholar
  341. B4.
    J. A. G. Perez, P. Areces Bravo, V. F. Reboeledo, J. I. Garcia-Hierro and J. F. Mola, Carbohydrate Res. 176, 97 (1988).Google Scholar
  342. B5.
    J. Fuentes, J. I. Fernandez Garcia-Hierro, P. A. Bravo, F. R. Vicente and J. A. G. Perez, Nucleosides and Nucleotides 7, 457 (1988).Google Scholar
  343. B6.
    T. Itaya, H. Matsumoto, T. Wanatabe and T. Harada, Chem. Pharm. Bull. 33, 2339 (1985).Google Scholar
  344. B7.
    R. D. Chambers, M. R. Bryce, S. I. Mullins and A. Parkin, Nucleosides and Nucleotides, 7, 339 (1988).Google Scholar
  345. B8.
    T. Itaya, T. Saito, T. Harada, S. Kagatani and T. Fujii, Chem. Pharm. Bull. 37, 3200 (1989).Google Scholar
  346. B9.
    G. Mackenzie, H. A. Wilson, G. Shaw and D. Ewing, J. Chem. Soc. Perkin. I, 2541 (1989).Google Scholar
  347. B10.
    T. Hiromi in, Yakugaku Kenkyu no Shinpo 5, 46 (1989).Google Scholar
  348. B11.
    A. Grouiller, R. W. Humble, G. Iveson, G. Mackenzie, B. Najib, H. Pacheoco, and G. Shaw, Nucleosides Nucleotides 6, 399 (1987); M. Suzuki, H. Tanaka, and T. Miyasaka, Chem. Pharm. Bull. 35, 4056 (1987).Google Scholar
  349. B12.
    H. J. Thomas, J. M. Riordan, and J. A. Montgomery, Nucleosides Nucleotides 5, 431 (1986); J. H. Thomas, L. N. Avery, R. W. Brockman, and J. A. Montgomery, J. Med. Chem. 30, 431 (1987).PubMedGoogle Scholar
  350. B13.
    T. Ueda, A. Matsuda, N. Minakowa, T. Sasaki, and Y. Yanagi, Eur. Patent Appl. EP 331080 (CL. CO7H19?052) (1989).Google Scholar
  351. B14.
    V. A. Nair, D. A. Young, and R. De Silva, Jr., J. Org . Chem. 52, 1344 (1987).Google Scholar
  352. B15.
    K. Ramesh and R. P. Panzica, J. Chem. Soc. Perkin Trans. 1 1989, 1769.Google Scholar
  353. B16.
    B. T. Golding, P. K. Slaich, and W. P. Watson, J. Chem. Soc. Chem. Commun. 1986, 901.Google Scholar
  354. B17.
    P. C. Srivastava and A. Hasan, Nucleosides Nucleotides 8, 1281 (1989).Google Scholar
  355. B18.
    H. Hagakawa, H. Aslizawa, H. Tanaka, T. Miyasaka, and K. Yamaguchi, Nucleosides Nucleotides 8, 1287 (1989).Google Scholar
  356. B19.
    Y. Tarumi, Y. Takebayashi, and T. Atsumi, J. Heterocycl. Chem. 21, 849 (1984).Google Scholar
  357. B20.
    H. Hahn, H. Heitsch, R. Rathman, G. Zimmermann, C. Baumann, H. Zahner, and W. A. Konig, Liebigs Ann. Chem. 1987, 803.Google Scholar
  358. B21.
    F. Seela and W. Bourgeois, Synthesis 1989, 912.Google Scholar
  359. B22.
    C. Papageorgiou and C. Tamm, Helo. Chim. Acta 70, 138 (1987).Google Scholar
  360. B23.
    M. Ikehara and T. Inaoka, Nucleosides Nucleotides 4, 515 (1985).Google Scholar
  361. B24.
    M. Olivanen, H. Lonnberg, Z. Kazimierczok, and D. Shugar, Nucleosides Nucleotides 8, 133 (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Gordon Shaw
    • 1
  1. 1.Department of Chemistry and Chemical TechnologyUniversity of BradfordBradford, West YorkshirEngland

Personalised recommendations