Polymer-Small Molecule Interactions

  • I. D. Robb


The solubility and behaviour of polymers in solution is controlled by the balance of all the interactions between the solvent molecules and the polymer segments. In non aqueous systems, the solvent-solvent interaction is often weak, whilst in aqueous systems it is strong and can dominate the solution behaviour of polymers. When solid polymers are dissolved in relatively non-polar solvents, the main energy contribution to their dissolution comes from the entropy arising from the increased volume available to the solvent molecules1. For polar polymers dissolving in polar solvents, there are important additional contributions from the interactions between dipoles or charges. Water can be regarded as an extreme example of a polar liquid having, in addition to these simple elctrical interactions, an important three dimensional structure, disruption of which can produce large entropy changes. When polar molecules or ions dissolve in water, there must be sufficient energy from the solvent-water interaction to overcome any decrease in entropy, arising from the change in ordering of the water molecules.


Sodium Dodecyl Sulphate Anionic Surfactant Vinyl Alcohol Vinyl Pyrrolidone Mica Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Flory, Disc.Faraday Soc, 1970, 49, 13.CrossRefGoogle Scholar
  2. 2.
    F. Franks, ‘Water: A Comprehensive Treatise’. 1973: New York, Plenum Press. Vol. 2. Chapter 1.Google Scholar
  3. 3.
    F. Franks and D.S. Reid, ‘Water: A Comprehensive Treatise’. 1973: New York, Plenum Press. Vol.2. Chapter 5.Google Scholar
  4. 4.
    C. Tanford, ‘The Hydrophobic Effect’. 1980: New York, John Wiley & Sons.Google Scholar
  5. 5.
    N. Ise, K. Mita and T. Okubo, J.chem.Soc. Faraday I, 1973, 69, 106.CrossRefGoogle Scholar
  6. 6.
    K. Amaya and R. Fujishiro, Bull.chem.Soc.Japan, 1956, 29, 351.Google Scholar
  7. 7.
    A. Kagemoto, S. Murakami and R. Fujishiro, Makromolek.chem., 1967, 105, 154.CrossRefGoogle Scholar
  8. 8.
    J. C. Day and I.D. Robb, Polymer, 1981, 22, 1530.CrossRefGoogle Scholar
  9. 9.
    R.P. Rand, Ann.rev. Biophys.Bioeng., 1981, 10, 277.CrossRefGoogle Scholar
  10. 10.
    J. N. Israelachvili and G.E. Adams, J.chem.Soc. Faraday I, 1978, 64, 975.CrossRefGoogle Scholar
  11. 11.
    J. N. Israelachvili, J.chem.Soc. Faraday Disc, 1978, 83, 531.Google Scholar
  12. 12.
    R.M. Pashley, J. Colloid interface Sci., 1981, 83, 531.CrossRefGoogle Scholar
  13. 13.
    Z.I. Hodes, G. Nemethy and H.A. Sheraga, Biopolymers, 1979, 18, 1565.CrossRefGoogle Scholar
  14. 14.
    P.H. von Hippel and T. Schleich, ‘Structure and Stability of Biological Macromolecules’ (Ed. S.N. Timasheff and G.D. Fasman) 1969: New York. Marcel Dekker. Chapter 6.Google Scholar
  15. 15.
    M.J. Garvey and I.D. Robb, J.chem.Soc Faraday I, 1979, 75, 993.CrossRefGoogle Scholar
  16. 16.
    D.G. Hall, J.chem.Soc. Faraday II, 1974, 70, 1526.CrossRefGoogle Scholar
  17. 17.
    I.D. Robb in ‘Anionic Surfactants, Vol II’,(Ed.E.H. Lucassen-Reynders). 1981: New York. Marcel Dekker. Chapter 3.Google Scholar
  18. 18.
    S. Saito, J. Colloid interface Sci., 1967, 30, 372.Google Scholar
  19. 19.
    S. Saito, J.polymer Sci., A-1, 1969, 7, 1789.Google Scholar
  20. 20.
    H. Arai and S. Horin, J. Colloid interface Sci., 1969, 30, 372.CrossRefGoogle Scholar
  21. 21.
    M.M. Breuer & I.D. Robb, Chem. & Industry, 1972,530.Google Scholar
  22. 22.
    S. Saito, J. Colloid interface Sci., 1960, 15, 283.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • I. D. Robb
    • 1
  1. 1.Unilever Research, Port Sunlight LaboratoryWirral, MerseysideUK

Personalised recommendations