Multifaceted Chemically Based Resistance in Plants

  • Isao Kubo
  • Frederick J. Hanke
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 19)


When one considers the fairly universal primary metabolism among plants, it might seem reasonable to expect them to be relatively equal in susceptibility to bacterial, fungal or viral pathogens as well as to animal attack. However, it is quite obvious that is not the case. Everyone has seen evidence of plant resistance to pathogens or animal attack in their own garden. One plant is covered with a blanket of aphids or blight while another species is relatively unharmed.


Artificial Diet Oleanolic Acid Head Capsule Iridoid Glycoside Spodoptera Frugiperda 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    WILLIAMS, K., L. GILBERT. 1981. Insects as selective agents on plant vegetative morphology: Egg mimicry reduces egg laying by butterflies. Science 212: 467–469.ADSCrossRefGoogle Scholar
  2. 2.
    JUNIPER, B.E., C.E. JEFFREE. 1983. Plant Surfaces. Edward Arnold Publishers Limited, London, 42 pp.Google Scholar
  3. 3.
    BERNAYS, E.A., R.F. CHAPMAN. 1978. Plant chemistry and acridoid feeding behaviour. In Biochemical Aspects of Plant and Animal Coevolution. ( J.B. Harborne, ed.), Academic Press, New York, pp. 99–137.Google Scholar
  4. 4.
    KUBO, I., K. NAKANISHI. 1977. Insect antifeedants and repellents from African plants. In Host Plant Resistance to Pests. (P.A. Hedin, ed.), ACS Symposium Series 62, American Chemical Society, Washington, D.C., pp. 165–178.CrossRefGoogle Scholar
  5. 5.
    HARBORNE, J.B. 1982. Introduction to Ecological Biochemistry. Academic Press, New York, pp. 66–67.Google Scholar
  6. 6.
    KUBO, I., J.A. KLOCKE. 1981. Azadirachtin, insect ecdysis inhibitor. Agric. Biol. Chem. 46 (7): 1951–1953.CrossRefGoogle Scholar
  7. 7.
    KUBO, I., J.A. KLOCKE. 1981. Limonoids as insect control agents. Les Colloques de I’INRA 7: 117–129.Google Scholar
  8. 8.
    NAKANISHI, K. 1975. Structure of the insect antifeedant azadirachtin. In Recent Advances in Phytochemistry. (V.C. Runeckles, ed.), Vol. 9, Plenum Press, New York, pp. 283–298.CrossRefGoogle Scholar
  9. 9.
    CREMLYN, R. 1979. Pesticides. John Wiley and Sons, New York, pp. 41–42.Google Scholar
  10. 10.
    FEENY, P. 1976. Plant apparency and chemical defense. In Recent Advances in Phytochemistry. (J.W. Wallace, R.L. Mansell, eds.), Vol. 10, Plenum Press, New York, pp. 1–40.Google Scholar
  11. 11.
    KUBO, I., Y. LEE, V. BALOGH-NAIR, K. NAKANISHI, A. CHAPYA. 1976. Structure of ajugarins. J. Chem. Soc., Chem. Commun., pp. 949–950.Google Scholar
  12. 12.
    KUBO, I., M. KIDO, Y. FUKUYAMA. 1980. X-ray crystal structure of 12-bromoajugarin I and conclusion on the absolute configuration of ajugarins. J. Chem. Soc., Chem. Commun., pp. 897–898.Google Scholar
  13. 13.
    KRIEGEN, J.H. 1982. Chemistry confronts global food crisis. Chem. Eng. News, December 20, pp. 9–23.CrossRefGoogle Scholar
  14. 14.
    CHAN, B.G., A.C. WAISS, JR., W.L. STANLEY, A.E. GOODBAN. 1978. A rapid diet preparation method for antibiotic phytochemical bioassay. J. Econ. Entomol. 71: 366–368.Google Scholar
  15. 15.
    KUBO, I., J.A. KLOCKE, T. MIURA, Y. FUKUYAMA. 1982. Structure of ajugarin IV. J. Chem. Soc., Chem. Commun., pp. 618–619.Google Scholar
  16. 16.
    KUBO, I., Y. FUKUYAMA, A. CHAPYA. 1983. Structure of ajugarin V. Chem. Lett., pp. 223–234.Google Scholar
  17. 17.
    KOJIMA, Y., N. KATO. 1979. Synthesis and conformational analysis of the perhydrofuro [2,3-b] furan compounds by using lanthanide shift reagent and empirical force-field calculations. Tetrahedron Lett. 48: 4667–4670.CrossRefGoogle Scholar
  18. 18.
    LUTEIJN, J.M., A. de GROOT. 1981. 9a-(acetoxymethyl)8a, 8’-epoxy-3a,4,4-trimethyl-trans-decalin-la-ol acetate, a model for the investigation of structure-activity relationships of the insect antifeedant neoclerodanes. J. Org. Chem. 46: 3448–3452.CrossRefGoogle Scholar
  19. 19.
    KUBO, I., J.A. KLOCKE, I. GANJIAN, N. ICHIKAWA, T. MATSUMOTO. 1983. Efficient isolation of phytoecdysones from Ajuga plants by high-performance liquid chromatography and droplet counter-current chromatography. J. Chromatog. 257: 157–161.CrossRefGoogle Scholar
  20. 20.
    KUBO, I., J.A. KLOCKE. 1983. Isolation of phytoecdysones as insect ecdysis inhibitors and feeding deterrents. In Plant Resistance to Insects. (P.A. Hedin, ed.), ACS Symposium Series 208, American Chemical Society, Washington, D.C., pp. 329–346.CrossRefGoogle Scholar
  21. 21.
    DREYER, D.L., J.C. REESE, K.C. JONES. 1978. Aphid feeding deterrents in sorghum: bioassay, isolation, and characterization. J. Chem. Ecol. 7: 273–284.Google Scholar
  22. 22.
    KUBO, I. unpublished results.Google Scholar
  23. 23.
    STITCHER, O. 1977. The analysis of íridoid drugs. Pharm. Acta. Hely. 52 (1–2): 20–32.Google Scholar
  24. 24.
    CHUNG, B., H. LEE, J. KIM. 1980. Iridoid glycosidè. I. Studies on the iridoid glycoside of Ajuga spectabolis (Nakai). Saengyack Hak hoe Chi. 11 (1): 15–23.Google Scholar
  25. 25.
    ITO, S., M. KODAMA. 1976. Norditerpene dilactones from podocarpus species. Heterocycles 4 (3): 595–624.CrossRefGoogle Scholar
  26. 26.
    KUBO, I., T. MATSUMOTO, J.A. KLOCKE. 1984. Multi-chemical resistance of the conifer (Podocarpus gracilior (Podocarpaceae) to insect attack. J. Chem. Ecol. 10 (4): 547–559.CrossRefGoogle Scholar
  27. 27.
    KUBO, I., J.A. KLOCKE, T. MATSUMOTO. 1983. Identification of two insect growth inhibitory biflavonoids in Podocarpus gracilior. Rev. Latinoamer. Quim. 14 (2): 59–61.Google Scholar
  28. 28.
    KOOLMAN, J. 1982. Ecdysone metabolism. Insect Biochem. 12 (3): 225–50.CrossRefGoogle Scholar
  29. 29.
    KUBO, I., A. MATSUMOTO, I. TAKASE. 1984. A multi-chemical defense mechanism of bitter olive Olea europaea (Oleaceae): Is oleuropein a phytoalexin precursor. J. Chem. Ecol. 11 (2): 251–263.CrossRefGoogle Scholar
  30. 30.
    ASAKA, Y., T. KAMIKAWA, T. KUBOTA, H. SAKAMOTO. 1972. Structures of seco-iridoids from Ligstrum obtasifolium (Steb. et Zucc.). Chem. Lett. 00: 141–144.CrossRefGoogle Scholar
  31. 31.
    KUBO, I., A. MATSUMOTO. 1984. Molluscicides from olive Olea europaea and their efficient isolation by countercurrent chromatographies. J. Agric. Food Chem. 32: 687–688.CrossRefGoogle Scholar
  32. 32.
    RONCERO, A.V., M.L. JANER. 1969. Acidos triterpenicos del olivo. Grasas Aceites 20: 133–138.Google Scholar
  33. 33.
    HARBORNE, J.B., J.L. INGHAM. 1978. Biochemical aspects of the coevolution of higher plants with their fungal parasites. In J.B. Harborne, ed., op. cit. Reference 3, pp. 343–400.Google Scholar
  34. 34.
    JUNIPER, B.E., C.E. JEFFREE. 1983. Plant Surfaces Edward Arnold Publishers Limited, London, 6 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Isao Kubo
    • 1
  • Frederick J. Hanke
    • 1
  1. 1.Division of Entomology and Parasitology College of Natural ResourcesUniversity of CaliforniaBerkeleyUSA

Personalised recommendations