Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 19))

Abstract

While certain individual plant chemicals are closely identified with particular plant families—sinigrin and the Cruciferae, for example1—plant species in reality produce. a variety of biosynthetically distinct secondary compounds. The tremendous chemical diversity that characterizes the angiosperms in general holds for an individual plant as well. The Umbelliferae are among the more diverse; even the rather undistinguished parsnip (Pastinaca sativa), a biennial that is a minor vegetable crop under cultivation and a noxious weed when naturalized, contains no fewer than seven classes of secondary compounds (Table 1). Yet interactions among co-occurring secondary compounds as regards herbivory, insect and otherwise, have been largely ignored by investigators who have instead concentrated on single classes of secondary products. This emphasis is the result of both practical and theoretical considerations. Operationally, examining a single class of compounds facilitates the design and execution of experiments. Conceptually, stepwise insect/plant coevolution, as formalized by Ehrlich and Raven,2 derived largely from experimental work on the Cruciferae;3–5 the dramatic effects of mustard oil glycosides as toxins to nonadapted species6,7 and as attractants to adapted species8–12 led to the tacit assumption (and fervent hope) that single chemicals can provide the key to understanding insect/plant relationships.

“When we are all performing together it will have a very good effect.” The ass, in “The Brementown Musicians”

(J. and W. Grimm, 1814)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FEENY, P. 1977. Defensive ecology of the Cruciferae. Ann. Missouri Bot. Gard. 64: 221–234.

    Article  Google Scholar 

  2. EHRLICH, P.R., P.H. RAVEN. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  3. VERSCHAFFELT, E. 1911. The case determining the selection of food in some herbivorous insects. Proc. Acad. Sci. Amsterdam 13: 536–542.

    Google Scholar 

  4. THORSTEINSON, A.J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Canad. J. Zool. 31: 52–72.

    Article  Google Scholar 

  5. THORSTEINSON, A.J. 1960. Host selection in phytophagous insects. Ann. Rev. Entomol. 5: 193–218.

    Article  Google Scholar 

  6. ERICKSON, J.M., P. FEENY. 1974. Sinigrin: a chemical barrier to the black swallowtail butterfly, Papilio polyxenes. Ecology 55: 103–111.

    Article  Google Scholar 

  7. BLAU, P.A., P. FEENY, L. CONTARDO, D.S. ROBSON. 1978. Allylglucosinolate and herbivorous caterpillars: a contrast in toxicity and tolerance. Science 200: 1296–1298.

    Article  ADS  Google Scholar 

  8. DAVID, W.A., B.O.C. GARDINER. 1962. Oviposition and the hatching of the eggs of Pieris brassicae (L.) in a laboratory culture. Bull. Entomol. Res. 53: 91–109.

    Article  Google Scholar 

  9. FEENY, P., K.L. PAAUWE, N.J. DEMONG. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 63: 832–841.

    Google Scholar 

  10. HICKS, K.L. 1974. Mustard oil glycosides: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 67: 261–264.

    ADS  Google Scholar 

  11. HAWKES, C., T.H. COAKER. 1979. Factors affecting the behavioral responses of the adult cabbage root fly, Delia brassicae, to host plant odor. Entomol. Exp. Appl. 25: 45–58.

    Article  Google Scholar 

  12. SCHOONHOVEN, L.M. 1967. Chemoreception of mustard oil glucosides in larvae of Pieris brassicae. Proc. Kon. Ned. Akad. Wtsch. C. 70: 556–563.

    Google Scholar 

  13. REES, J.C. 1969. Chemoreceptor specificity associated with choice of feeding site by the beetle, Chrysolina brunsvicensis, on its foodplant, Hypericum hirsutum. Entomol. Exp. Appl. 12: 565–583.

    Article  Google Scholar 

  14. METCALF, R.L., A.M. RHODES, R.A. METCALF, J. FERGUSON, E.R. METCALF, P-Y. LU. 1982. Cucurbitacin contents and diabroticite (Coleoptera: Chrysomelidae) feeding upon Cucurbita spp. Environ. Entomol. 11: 931–937.

    Google Scholar 

  15. DETHIER, V.G. 1973. Electrophysiological studies of gustation in lepidopterous larvae. II. Taste spectra in relation to food-plant discrimination. J. Comp. Physiol. 82: 103–134.

    Article  ADS  Google Scholar 

  16. FEENY, P., L. ROSENBERRY, M. CARTER. 1983. Chemical aspects of oviposition behavior in butterflies. In: Herbivorous Insects: Host-seeking Behavior and Mechanisms. (S. Ahmad, ed.), Academic Press, New York, pp. 27–76:

    Google Scholar 

  17. GUERIN, P.M., E. STADLER, H.R. BUSER. 1983. Identification of host plant attractants for the carrot fly, Psila rosae. J. Chem. Ecol. 9: 843–861.

    Article  Google Scholar 

  18. MAY, M.L., S. AHMAD. 1983. Host location in the Colorado potato beetle: searching mechanisms in relation to oligophagy. In: S. Ahmad, ed., op. cit. Reference 16, pp. 173–199.

    Google Scholar 

  19. RODRIGUEZ, J.G., T.R. KEMP, Z.T. DABROWSKI. 1976. Behavior of Tetranychus urticae toward essential oil mixtures from strawberry foliage. J. Chem. Ecol. 2: 221–230.

    Article  Google Scholar 

  20. LADD, T.L., T.P. McGOVERN. 1980. Japanese beetle: enhancement of lures by eugenol and caproic acid. J. Econ. Entomol. 73: 718–720.

    Google Scholar 

  21. WATANABE, T. 1958. Substances in mulberry leaves which attract silkworm (Bombyx mori). Nature 182: 325–326.

    Article  ADS  Google Scholar 

  22. HEDIN, P.A., A.C. THOMPSON, R.C. GUELDNER. 1976. Cotton plant and insect constituents that control boll weevil behavior and development. Rec. Adv. Phytochem. 10: 271–350.

    Google Scholar 

  23. FINCH, S. 1978. Volatile plant chemicals and their effect on host finding by the cabbage root fly (Delia brassicae). Entomol. Exp. Appl. 24: 350–359.

    Article  Google Scholar 

  24. NIELSEN, J.K. 1978. Host plant discrimination within Cruciferae: feeding responses of four leaf beetles to glucosinolates, cucurbitacins and cardenolides. Entomol. Exp. Appl. 24: 41–54.

    Article  Google Scholar 

  25. RODMAN, J.E., F.S. CHEW. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae. Biochem. Syst. Ecol. 8: 43–50.

    Article  Google Scholar 

  26. McKEY, D. 1979. The distribution of secondary compounds within plants. In: Herbivores, Their Interaction With Secondary Plant Metabolites. ( G.A. Rosenthal, D.H. Janzen, eds.), Academic Press, New York, pp. 55–133.

    Google Scholar 

  27. PIMENTEL, D., A.C. BELLOTTI. 1976. Parasite-host population systems and genetic stability. Am. Nat. 110: 877–888.

    Article  Google Scholar 

  28. FEENY, P. 1983. Coevolution of plants and insects. In: Natural Products for Innovative Pest Management. ( D.L. Whitehead, W.S. Bowers, eds.), Pergamon Press, Oxford, pp. 167–185.

    Google Scholar 

  29. OPPENOORTH, F.J., W. WELLING. 1976. Biochemistry and physiology of resistance. In: Insecticide Biochemistry and Physiology. ( C.F. Wilkinson, ed.), Plenum Press, New York, 768 pp.

    Google Scholar 

  30. BROWN, A.W., R. PAL. 1971. Insecticide Resistance in Arthropods. World Health Organization, Geneva, pp. 491.

    Google Scholar 

  31. GEORGHIOU, G.P., R.B. MELLON. 1983. Pesticide resistance in time and space. In: Pest Resistance to Pesticides. ( G.P. Georghiou, T. Saito, eds.), Plenum Press, New York, pp. 1–46.

    Chapter  Google Scholar 

  32. GEORGHIOU, G.P. 1983. Management of resistance in arthropods. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 769–792.

    Google Scholar 

  33. OZAKI, K. 1983. Suppression of resistance through synergistic combinations with emphasis on plant-hoppers and leafhoppers infesting rice in Japan. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 595–614.

    Google Scholar 

  34. BROOKS, G.T. 1976. Penetration and distribution of insecticides. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 3–60.

    Google Scholar 

  35. PLUTHERO, F.G., R.S. SINGH. 1984. Insect behavioural responses to toxins: practical and evolutionary considerations. Can. Entomol. 116: 57–68.

    Article  Google Scholar 

  36. CHAPMAN, R.F., E.A. BERNAYS. 1972. The chemical resistance of plants to insect attack. Pont. Acad. Sci. Scripta Var. 41: 603–643.

    Google Scholar 

  37. BERNAYS, E.A., R.F. CHAPMAN. 1977. Deterrent chemicals as a basis of oligophagy in Locusta migratoria (L.). Ecol. Entomol. 2: 1–18.

    Article  Google Scholar 

  38. GUTHRIE, F.E., W.V. CAMPBELL, R.L. BARON. 1962. Feeding sites of the green peach aphid with respect to its adaptation to tobacco. Ann. Entomol. Soc. Am. 55: 42–46.

    Google Scholar 

  39. SUN, Y.P., E.R. JOHNSON. 1972. Quasi-synergism and penetration of insecticides. J. Econ. Entomol. 65: 349–353.

    Google Scholar 

  40. BROOKS, G.T. 1976. Penetration and distribution of insecticides. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 3–58.

    Google Scholar 

  41. HOLLINGWORTH, R.M. 1976. The biochemical and physiological basis of selective toxicity. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 431–506.

    Google Scholar 

  42. SELF, L.S., F.E. GUTHRIE, E. HODGSON. 1964. Adaptation of tobacco hornworms to the ingestion of nicotine. J. Insect Physiol. 10: 907–914.

    Article  Google Scholar 

  43. FARNHAM, A.W. 1977. Genetics of resistance of houseflies (Musca domestica L.) to pyrethroids. I. Knock-down resistance. Pest. Sci. 8: 631–636.

    Article  Google Scholar 

  44. BRATTSTEN, L.B. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals. In: G.A. Rosenthal, D.H. Janzen, eds., op. cit. Reference 26, pp. 199–271.

    Google Scholar 

  45. BRATTSTEN, L.B. 1979. Ecological significance of mixed function oxidations. Drug Metab. Rev. 10: 35–58.

    Article  Google Scholar 

  46. WILKINSON, C.F. 1976. Insecticide interactions. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 605–648.

    Google Scholar 

  47. BRATTSTEN, L.B., C.F. WILKINSON, T. EISNER. 1977. Herbivore plant interactions: mixed-function oxidases and secondary plant substances. Science 196: 1349–1352.

    Article  ADS  Google Scholar 

  48. PLAPP, F.W., T.C. WANG. 1983. Genetic origins of insecticide resistance. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 47–70.

    Google Scholar 

  49. WILKINSON, C.F. 1983. Role of mixed-function oxidases in insecticide resistance. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 175–206.

    Google Scholar 

  50. TERRIERE, L.C. 1983. Enzyme induction, gene amplification and insect resistance to insecticides. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 265–298.

    Google Scholar 

  51. GEORGHIOU, G.P. 1983. Management of resistance in arthropods. I:n G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 769–792.

    Google Scholar 

  52. JACOBSON, M., D.G. CROSBY. 1971. Naturally Occurring Insecticides. Marcel Dekker, Inc., New York, 585 pp.

    Google Scholar 

  53. CROSBY, D.G. 1966. Natural pest control agents. In: Natural Pest Control Agents. (R.F. Gould, ed.), Advances in Chemistry Series 53, American Chemical Society, Washington, pp. 1–16.

    Chapter  Google Scholar 

  54. RHOADES, D.F., R.G. CATES. 1976. A general theory of plant antiherbivore chemistry. Rec. Adv. Phytochem. 10: 168–213.

    Google Scholar 

  55. BERNAYS, E.A. 1983. Antifeedants in crop pest management. In: D.L. Whitehead, W.S. Bowers, eds., op. cit. Reference 28, pp. 259–271.

    Google Scholar 

  56. FEENY, P. 1976. Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 1–40.

    Google Scholar 

  57. ADAMS, C.M., E.A. BERNAYS. 1978. The effects of combinations of deterrents on the feeding behaviour of Locusta migratoria. Entomol. Exp. Appl. 23: 101–109.

    Article  Google Scholar 

  58. SCHOONHOVEN, L.M. 1982. Biological aspects of antifeedants. Entomol. Exp. Appl. 31: 57–69.

    Article  Google Scholar 

  59. JERMY, T. 1983. Multiplicity of insect antifeedants in plants. In: D.L. Whitehead, W.S. Bowers, eds., op. cit. Reference 28, pp. 223–236.

    Google Scholar 

  60. APPELBAUM, S.W., Y. BIRK. 1979. Saponins. In: G.A. Rosenthal, D.H. Janzen, eds., op. cit. Reference 26, pp. 539–566.

    Google Scholar 

  61. LADYGINA, E.U., V.A. MAKAROVA, N.S. IGNAT’EVA. 1970. Morphological and anatomical description of Pastinaca sativa fruit and localization of the furocoumarins in them. Farmatsiya 19: 29–35.

    Google Scholar 

  62. STAHL, E., K.H. KUBECZKA. 1979. Uber atherische Ole der Apiaceae (Umbelliferae). VI. Untersuchungen zum Vorkommen von Chemotypen bei Pastinaca sativa L. Planta Med. 37: 49–56.

    Article  Google Scholar 

  63. METCALF, R.L. 1967. Mode of action of insecticide synergists. Ann. Rev. Entomol. 12: 229–256.

    Article  Google Scholar 

  64. CASIDA, J.E. 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J. Agr. Food Chem. 18: 753–760.

    Article  Google Scholar 

  65. TAHORI, A.S. (ed.). 1971. Insecticide Resistance, Synergism, Enzyme Induction. Gordon and Breach, New York, 302 pp.

    Google Scholar 

  66. EAGLESON, C. 1942. Sesame oil as a synergist of pyrethrum insecticides. Soap and Sanit. Chem. 18: 125–127.

    Google Scholar 

  67. HALLER, H.L., E.R. McGOVRAN, L.D. GOODHUE, W.N. SULLIVAN. 1942. The synergistic action of sesamin with pyrethrum insecticides. J. Org. Chem. 7: 183–185.

    Google Scholar 

  68. DOSKOTCH, R.W., F.S. EL-FERALY. 1969. Isolation and characterization of (+) sesamin and β-cyclopyrethrosin from pyrethrum flowers. Can. J. Chem. 47: 1139–1142.

    Google Scholar 

  69. KRIEGER, R.I., P.P. FEENY, C.F. WILKINSON. 1971. Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science 172: 579–581.

    Article  ADS  Google Scholar 

  70. MILLER, J.S., P. FEENY. 1983. Effects of benzylisoquinoline aldaloids on the larvae of polyphagous Lepidoptera. Oecología 58: 332–339.

    Article  Google Scholar 

  71. SCRIBER, J.M. 1983. Host-plant suitability. In: Chemical Ecology of Insects. N.J. Bell, R.T. Carde, eds.), Sinauer Associates, Sunderland, Massachusetts, pp. 159–202.

    Google Scholar 

  72. HARBORNE, J.B., V.H. HEYWOOD, C.A. WILLIAMS. 1969. Distribution of myristicin in seeds of the Umbelliferae. Phytochem. 8: 1729–1732.

    Article  Google Scholar 

  73. BERENBAUM, M. 1978. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores. Science 201: 532–534.

    Article  ADS  Google Scholar 

  74. BERENBAUM, M. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37: 163–179.

    Article  Google Scholar 

  75. BERENBAUM, M., P. FEENY. 1981. Toxicity of angular furanocoumarins to swallowtails: escalation in a coevolutionary arms race? Science 212: 927–929.

    Article  ADS  Google Scholar 

  76. KOGAN, J., D.K. SELL, R.E. STINNER, J.R. BRADLEY, M. KOGAN. 1978. V. A Bibliography of Heliothis zea (Boddie) and H. virescens (F.) (Lepidoptera: Noctuidae). International Agricultural Publications INTSOY Series Number 17, Urbana, Illinois, 242 pp.

    Google Scholar 

  77. MIYAKADO, M., I. NAKAYAMA, N. OHNO, H. YOSHIOKA. 1983. Structure, chemistry and actions of the Piperaceae amids: new insecticidal constituents isolated from the pepper plant. In: Natural Products for Innovative Pest Management. ( D.L. Whitehead, ed.), Pergamon Press, New York, pp. 369–382.

    Google Scholar 

  78. NEWMAN, A.A. 1962. The occurrence, genesis and chemistry of the phenolic methylenedioxy ring in nature. Chem. Prod. 25: 161–166.

    Google Scholar 

  79. LICHTENSTEIN, E.P., J.E. CASIDA. 1963. Myristicin, an insecticide and synergist occurring naturally in the edible parts of parsnip. J. Agric. Food Chem. 11: 410–415.

    Article  Google Scholar 

  80. LUTHY, J., M.H. BENN. 1977. Thiocyanate formation from glucosinolates: a study of the autolysis of allylglucosinolate in Thlaspi arvense L. seed flour extracts. Can. J. Biochem. 55: 1028–1031.

    Google Scholar 

  81. WILKINSON, C.F. 1971. Insecticide synergists and their mode of action. In A.S. Tahori, ed., op. cit. Reference 65, pp. 117–160.

    Google Scholar 

  82. BOHLMANN, F. 1971. Acetylenic compounds in the Umbelliferae. Bot. J. Linn. Soc. 64: 279–291.

    Google Scholar 

  83. BOHLMANN, F., W. SUCROW. 1963. Natürlich vorkommende Acetylenverbindungen. In: Modern Methods of Plant Analysis, Vol. 6. ( H.F. Linskens, M.V. Tracey, eds.), Springer-Verlag, Berlin, pp. 81–108.

    Google Scholar 

  84. HENNESEY, D.J. 1971. The design of synergists for large scale application. In A.S. Tahori, ed., op. cit. Reference 65, pp. 161–166.

    Google Scholar 

  85. BERENBAUM, M. 1985. Post-ingestive effects of allelochemicals on insects, on Paracelsus and plant products. In Insect-plant Interactions. (T.A. Miller, J. Miller, eds.), Springer-Verlag, New York. Chapter 5 (in press).

    Google Scholar 

  86. JOHNSON, A.E., H. NURSTEN, A. WILLIAMS. 1971. Vegetable volatiles: a survey of components identified: Part II. Chem. Ind. 71: 1212–2222

    Google Scholar 

  87. BROWER, L.P., J.N. SEIBER, C.J. NELSON, S.P. LYNCH, P.M. TUSKES. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed, Asclepias eriocarpa in California. J. Chem. Ecol. 8: 579–633.

    Article  Google Scholar 

  88. MURRAY, R.D.H., J. MENDEZ, S.A. BROWN. 1982. The Natural Coumarins. John Wiley and Sons Ltd., Chichester.

    Google Scholar 

  89. WATERMAN, P.G. 1975. Alkaloids of the Rutaceae: their distribution and systematic significance. Biochem. Syst. Ecol. 3: 149–180.

    Article  Google Scholar 

  90. ZUCKER, W.V. 1983. Tannins: does structure determine function? An ecological perspective. Am. Nat. 121: 335–365.

    Article  Google Scholar 

  91. SCOTT, B.R., M.A. PATHAK, G.R. MOHN. 1976. Molecular and genetic basis of furanocoumarin reactions. Mutat. Res. 39: 29–74.

    Article  Google Scholar 

  92. PATHAK, M.A., L.R. WORDEN, K.D. KAUFMAN. 1967. Effect of structural alterations on the photosensitizing potency of furocoumarins (psoralens) and related compounds. J. Invest. Dermatol. 48: 103–110.

    Google Scholar 

  93. BROWN, S.A. 1979. Biochemistry of the coumarins. Rec. Adv. Phytochem. 12: 249–286.

    Google Scholar 

  94. BERENBAUM, M., A.R. ZANGERL, J.K. NITAO. 1984. Furanocoumarins in seeds of wild and cultivated parsnip (Pastinaca sativa). Phytochem. 23: 1809–1810.

    Article  Google Scholar 

  95. MUSAJO, L., G. RODIGHIERO. 1962. The skin-photosensitizing furocoumarins. Experientia 18: 153–200.

    Article  Google Scholar 

  96. YAJIMA, T., N. KATO, K. MUNAKATA. 1977. Isolation of insect anti-feeding principles in Orixa japonica Thunb. Agric. Biol. Chem. 41: 1263–1268.

    Article  Google Scholar 

  97. CHAMPAGNE, D.T., J.T. ARNASON, B.J.R. PHILOGENE, J. LAM. 1984. Phototoxic effects of natural poly-acetylenes and thiophenes on insect herbivores. Phytochem. Soc. No. Am. Newsletter 24: 28.

    Google Scholar 

  98. KUBO, I. 1984. Multichemical insect and fungal resistance in plants. Rec. Adv. Phytochem. 19: 171–194.

    Google Scholar 

  99. JANZEN, D.H. 1973. Community structure of secondary compounds in nature. Pure Appl. Chem. 34: 529–538.

    Google Scholar 

  100. CARDE, R.T., T.C. BAKER. 1983. Sexual communication with pheromones. In W.J. Bell, R.T. Carde, eds., op. cit. Reference 71, pp. 355–524.

    Google Scholar 

  101. BLUM, M. (ed.). 1981. Chemical Defenses of Arthropods. Academic Press, New York, 562 pp.

    Google Scholar 

  102. SEIGLER, D.S. 1977. Primary roles for secondary compounds. Biochem. Syst. Ecol. 5: 195–199.

    Article  Google Scholar 

  103. CRANE, L. 1963. Household Stories from the Collection of Brothers Grimm. Dover Publications, New York, 269 pp.

    Google Scholar 

  104. KUBECZKA, K.H., E. STAHL. 1975. Uber atherische file der Apiaceae (Umbelliferae). I. Das Würzelöl von Pastinaca sativa. Planta Medica 27: 235–241

    Article  Google Scholar 

  105. HEGNAUER, R. 1964–1973. Chemotaxonomie der Pflanzen. 6 Volumes, Birkhauser Verlag, Basel.

    Google Scholar 

  106. STECK, W., B.K. BAILEY. 1969. Characterization of plant coumarins by combined gas chromatography, ultraviolet absorption spectroscopy and NMR analysis. Can. J. Chem. 47: 3577–3583.

    Article  Google Scholar 

  107. IVIE, G.W., D.L. HOLT, M.C. IVEY. 1981. Natural toxicants in human foods; psoralens in raw and cooked parsnip root. Science 213: 909–910.

    Article  ADS  Google Scholar 

  108. KLOCKE, J.A., B. CHAN. 1982. Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis zea. J. Insect Physiol. 28: 911–915.

    Article  Google Scholar 

  109. KOUL, 0. 1982. Insect feeding deterrents in plants. Indian Rev. Life Sci. 2: 97–125.

    Google Scholar 

  110. KUBO, I., J. KLOCKE. 1983. Isolation of phytoecdysones as insect ecdysis inhibitors and feeding deterrents. In: Plant Resistance to Insects. (P. Hedin, ed.), A.C.S. Symposium Series 208, American Chemical Society, Washington, D.C., pp. 329–346.

    Chapter  Google Scholar 

  111. RAUSHER, M.D. 1979. Coevolution in a Simple Herbivore-Plant System. Doctoral dissertation, Cornell University, Ithaca, New York.

    Google Scholar 

  112. WAISS, A.C., B. CHAN, C. ELIGER, D. DREYER, R. BINDER, R. GUELDNER. 1981. Insect growth inhibitors in crop plants. Bull. Entomol. Soc. Am. 27: 217–221.

    Google Scholar 

  113. WISDOM, C., J.T. SMILEY, E. RODRIGUEZ. 1983. Toxicity and deterrency of sesquiterpene lactones and chromenes to the corn earworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 76: 993–998.

    Google Scholar 

  114. WILKINSON, C.F. 1973. Insecticide synergism. Chemtech 56: 492–497.

    Google Scholar 

  115. GOODWIN, T.W., E.I. MERCER. 1972. Introduction to Plant Biochemistry. 1st Edition, Pergamon Press, New York.

    Google Scholar 

  116. KARRER, W. 1958. Konstitution und Vorkommen der Organischen Pflanzenstoffe. Birkhauser Verlag, Basel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berenbaum, M. (1985). Brementown Revisited: Interactions Among Allelochemicals in Plants. In: Cooper-Driver, G.A., Swain, T., Conn, E.E. (eds) Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9658-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9658-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9660-5

  • Online ISBN: 978-1-4757-9658-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics