Brementown Revisited: Interactions Among Allelochemicals in Plants

  • May Berenbaum
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 19)

Abstract

While certain individual plant chemicals are closely identified with particular plant families—sinigrin and the Cruciferae, for example1—plant species in reality produce. a variety of biosynthetically distinct secondary compounds. The tremendous chemical diversity that characterizes the angiosperms in general holds for an individual plant as well. The Umbelliferae are among the more diverse; even the rather undistinguished parsnip (Pastinaca sativa), a biennial that is a minor vegetable crop under cultivation and a noxious weed when naturalized, contains no fewer than seven classes of secondary compounds (Table 1). Yet interactions among co-occurring secondary compounds as regards herbivory, insect and otherwise, have been largely ignored by investigators who have instead concentrated on single classes of secondary products. This emphasis is the result of both practical and theoretical considerations. Operationally, examining a single class of compounds facilitates the design and execution of experiments. Conceptually, stepwise insect/plant coevolution, as formalized by Ehrlich and Raven,2 derived largely from experimental work on the Cruciferae;3–5 the dramatic effects of mustard oil glycosides as toxins to nonadapted species6,7 and as attractants to adapted species8–12 led to the tacit assumption (and fervent hope) that single chemicals can provide the key to understanding insect/plant relationships.

Keywords

Secondary Compound Aristolochic Acid Multiple Attack Piperonyl Butoxide Plant Allelochemicals 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FEENY, P. 1977. Defensive ecology of the Cruciferae. Ann. Missouri Bot. Gard. 64: 221–234.CrossRefGoogle Scholar
  2. 2.
    EHRLICH, P.R., P.H. RAVEN. 1964. Butterflies and plants: a study in coevolution. Evolution 18: 586–608.CrossRefGoogle Scholar
  3. 3.
    VERSCHAFFELT, E. 1911. The case determining the selection of food in some herbivorous insects. Proc. Acad. Sci. Amsterdam 13: 536–542.Google Scholar
  4. 4.
    THORSTEINSON, A.J. 1953. The chemotactic responses that determine host specificity in an oligophagous insect (Plutella maculipennis (Curt.) Lepidoptera). Canad. J. Zool. 31: 52–72.CrossRefGoogle Scholar
  5. 5.
    THORSTEINSON, A.J. 1960. Host selection in phytophagous insects. Ann. Rev. Entomol. 5: 193–218.CrossRefGoogle Scholar
  6. 6.
    ERICKSON, J.M., P. FEENY. 1974. Sinigrin: a chemical barrier to the black swallowtail butterfly, Papilio polyxenes. Ecology 55: 103–111.CrossRefGoogle Scholar
  7. 7.
    BLAU, P.A., P. FEENY, L. CONTARDO, D.S. ROBSON. 1978. Allylglucosinolate and herbivorous caterpillars: a contrast in toxicity and tolerance. Science 200: 1296–1298.ADSCrossRefGoogle Scholar
  8. 8.
    DAVID, W.A., B.O.C. GARDINER. 1962. Oviposition and the hatching of the eggs of Pieris brassicae (L.) in a laboratory culture. Bull. Entomol. Res. 53: 91–109.CrossRefGoogle Scholar
  9. 9.
    FEENY, P., K.L. PAAUWE, N.J. DEMONG. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 63: 832–841.Google Scholar
  10. 10.
    HICKS, K.L. 1974. Mustard oil glycosides: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 67: 261–264.ADSGoogle Scholar
  11. 11.
    HAWKES, C., T.H. COAKER. 1979. Factors affecting the behavioral responses of the adult cabbage root fly, Delia brassicae, to host plant odor. Entomol. Exp. Appl. 25: 45–58.CrossRefGoogle Scholar
  12. 12.
    SCHOONHOVEN, L.M. 1967. Chemoreception of mustard oil glucosides in larvae of Pieris brassicae. Proc. Kon. Ned. Akad. Wtsch. C. 70: 556–563.Google Scholar
  13. 13.
    REES, J.C. 1969. Chemoreceptor specificity associated with choice of feeding site by the beetle, Chrysolina brunsvicensis, on its foodplant, Hypericum hirsutum. Entomol. Exp. Appl. 12: 565–583.CrossRefGoogle Scholar
  14. 14.
    METCALF, R.L., A.M. RHODES, R.A. METCALF, J. FERGUSON, E.R. METCALF, P-Y. LU. 1982. Cucurbitacin contents and diabroticite (Coleoptera: Chrysomelidae) feeding upon Cucurbita spp. Environ. Entomol. 11: 931–937.Google Scholar
  15. 15.
    DETHIER, V.G. 1973. Electrophysiological studies of gustation in lepidopterous larvae. II. Taste spectra in relation to food-plant discrimination. J. Comp. Physiol. 82: 103–134.ADSCrossRefGoogle Scholar
  16. 16.
    FEENY, P., L. ROSENBERRY, M. CARTER. 1983. Chemical aspects of oviposition behavior in butterflies. In: Herbivorous Insects: Host-seeking Behavior and Mechanisms. (S. Ahmad, ed.), Academic Press, New York, pp. 27–76:Google Scholar
  17. 17.
    GUERIN, P.M., E. STADLER, H.R. BUSER. 1983. Identification of host plant attractants for the carrot fly, Psila rosae. J. Chem. Ecol. 9: 843–861.CrossRefGoogle Scholar
  18. 18.
    MAY, M.L., S. AHMAD. 1983. Host location in the Colorado potato beetle: searching mechanisms in relation to oligophagy. In: S. Ahmad, ed., op. cit. Reference 16, pp. 173–199.Google Scholar
  19. 19.
    RODRIGUEZ, J.G., T.R. KEMP, Z.T. DABROWSKI. 1976. Behavior of Tetranychus urticae toward essential oil mixtures from strawberry foliage. J. Chem. Ecol. 2: 221–230.CrossRefGoogle Scholar
  20. 20.
    LADD, T.L., T.P. McGOVERN. 1980. Japanese beetle: enhancement of lures by eugenol and caproic acid. J. Econ. Entomol. 73: 718–720.Google Scholar
  21. 21.
    WATANABE, T. 1958. Substances in mulberry leaves which attract silkworm (Bombyx mori). Nature 182: 325–326.ADSCrossRefGoogle Scholar
  22. 22.
    HEDIN, P.A., A.C. THOMPSON, R.C. GUELDNER. 1976. Cotton plant and insect constituents that control boll weevil behavior and development. Rec. Adv. Phytochem. 10: 271–350.Google Scholar
  23. 23.
    FINCH, S. 1978. Volatile plant chemicals and their effect on host finding by the cabbage root fly (Delia brassicae). Entomol. Exp. Appl. 24: 350–359.CrossRefGoogle Scholar
  24. 24.
    NIELSEN, J.K. 1978. Host plant discrimination within Cruciferae: feeding responses of four leaf beetles to glucosinolates, cucurbitacins and cardenolides. Entomol. Exp. Appl. 24: 41–54.CrossRefGoogle Scholar
  25. 25.
    RODMAN, J.E., F.S. CHEW. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae. Biochem. Syst. Ecol. 8: 43–50.CrossRefGoogle Scholar
  26. 26.
    McKEY, D. 1979. The distribution of secondary compounds within plants. In: Herbivores, Their Interaction With Secondary Plant Metabolites. ( G.A. Rosenthal, D.H. Janzen, eds.), Academic Press, New York, pp. 55–133.Google Scholar
  27. 27.
    PIMENTEL, D., A.C. BELLOTTI. 1976. Parasite-host population systems and genetic stability. Am. Nat. 110: 877–888.CrossRefGoogle Scholar
  28. 28.
    FEENY, P. 1983. Coevolution of plants and insects. In: Natural Products for Innovative Pest Management. ( D.L. Whitehead, W.S. Bowers, eds.), Pergamon Press, Oxford, pp. 167–185.Google Scholar
  29. 29.
    OPPENOORTH, F.J., W. WELLING. 1976. Biochemistry and physiology of resistance. In: Insecticide Biochemistry and Physiology. ( C.F. Wilkinson, ed.), Plenum Press, New York, 768 pp.Google Scholar
  30. 30.
    BROWN, A.W., R. PAL. 1971. Insecticide Resistance in Arthropods. World Health Organization, Geneva, pp. 491.Google Scholar
  31. 31.
    GEORGHIOU, G.P., R.B. MELLON. 1983. Pesticide resistance in time and space. In: Pest Resistance to Pesticides. ( G.P. Georghiou, T. Saito, eds.), Plenum Press, New York, pp. 1–46.CrossRefGoogle Scholar
  32. 32.
    GEORGHIOU, G.P. 1983. Management of resistance in arthropods. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 769–792.Google Scholar
  33. 33.
    OZAKI, K. 1983. Suppression of resistance through synergistic combinations with emphasis on plant-hoppers and leafhoppers infesting rice in Japan. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 595–614.Google Scholar
  34. 34.
    BROOKS, G.T. 1976. Penetration and distribution of insecticides. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 3–60.Google Scholar
  35. 35.
    PLUTHERO, F.G., R.S. SINGH. 1984. Insect behavioural responses to toxins: practical and evolutionary considerations. Can. Entomol. 116: 57–68.CrossRefGoogle Scholar
  36. 36.
    CHAPMAN, R.F., E.A. BERNAYS. 1972. The chemical resistance of plants to insect attack. Pont. Acad. Sci. Scripta Var. 41: 603–643.Google Scholar
  37. 37.
    BERNAYS, E.A., R.F. CHAPMAN. 1977. Deterrent chemicals as a basis of oligophagy in Locusta migratoria (L.). Ecol. Entomol. 2: 1–18.CrossRefGoogle Scholar
  38. 38.
    GUTHRIE, F.E., W.V. CAMPBELL, R.L. BARON. 1962. Feeding sites of the green peach aphid with respect to its adaptation to tobacco. Ann. Entomol. Soc. Am. 55: 42–46.Google Scholar
  39. 39.
    SUN, Y.P., E.R. JOHNSON. 1972. Quasi-synergism and penetration of insecticides. J. Econ. Entomol. 65: 349–353.Google Scholar
  40. 40.
    BROOKS, G.T. 1976. Penetration and distribution of insecticides. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 3–58.Google Scholar
  41. 41.
    HOLLINGWORTH, R.M. 1976. The biochemical and physiological basis of selective toxicity. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 431–506.Google Scholar
  42. 42.
    SELF, L.S., F.E. GUTHRIE, E. HODGSON. 1964. Adaptation of tobacco hornworms to the ingestion of nicotine. J. Insect Physiol. 10: 907–914.CrossRefGoogle Scholar
  43. 43.
    FARNHAM, A.W. 1977. Genetics of resistance of houseflies (Musca domestica L.) to pyrethroids. I. Knock-down resistance. Pest. Sci. 8: 631–636.CrossRefGoogle Scholar
  44. 44.
    BRATTSTEN, L.B. 1979. Biochemical defense mechanisms in herbivores against plant allelochemicals. In: G.A. Rosenthal, D.H. Janzen, eds., op. cit. Reference 26, pp. 199–271.Google Scholar
  45. 45.
    BRATTSTEN, L.B. 1979. Ecological significance of mixed function oxidations. Drug Metab. Rev. 10: 35–58.CrossRefGoogle Scholar
  46. 46.
    WILKINSON, C.F. 1976. Insecticide interactions. In: C.F. Wilkinson, ed., op. cit. Reference 29, pp. 605–648.Google Scholar
  47. 47.
    BRATTSTEN, L.B., C.F. WILKINSON, T. EISNER. 1977. Herbivore plant interactions: mixed-function oxidases and secondary plant substances. Science 196: 1349–1352.ADSCrossRefGoogle Scholar
  48. 48.
    PLAPP, F.W., T.C. WANG. 1983. Genetic origins of insecticide resistance. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 47–70.Google Scholar
  49. 49.
    WILKINSON, C.F. 1983. Role of mixed-function oxidases in insecticide resistance. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 175–206.Google Scholar
  50. 50.
    TERRIERE, L.C. 1983. Enzyme induction, gene amplification and insect resistance to insecticides. In: G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 265–298.Google Scholar
  51. 51.
    GEORGHIOU, G.P. 1983. Management of resistance in arthropods. I:n G.P. Georghiou, T. Saito, eds., op. cit. Reference 31, pp. 769–792.Google Scholar
  52. 52.
    JACOBSON, M., D.G. CROSBY. 1971. Naturally Occurring Insecticides. Marcel Dekker, Inc., New York, 585 pp.Google Scholar
  53. 53.
    CROSBY, D.G. 1966. Natural pest control agents. In: Natural Pest Control Agents. (R.F. Gould, ed.), Advances in Chemistry Series 53, American Chemical Society, Washington, pp. 1–16.CrossRefGoogle Scholar
  54. 54.
    RHOADES, D.F., R.G. CATES. 1976. A general theory of plant antiherbivore chemistry. Rec. Adv. Phytochem. 10: 168–213.Google Scholar
  55. 55.
    BERNAYS, E.A. 1983. Antifeedants in crop pest management. In: D.L. Whitehead, W.S. Bowers, eds., op. cit. Reference 28, pp. 259–271.Google Scholar
  56. 56.
    FEENY, P. 1976. Plant apparency and chemical defense. Rec. Adv. Phytochem. 10: 1–40.Google Scholar
  57. 57.
    ADAMS, C.M., E.A. BERNAYS. 1978. The effects of combinations of deterrents on the feeding behaviour of Locusta migratoria. Entomol. Exp. Appl. 23: 101–109.CrossRefGoogle Scholar
  58. 58.
    SCHOONHOVEN, L.M. 1982. Biological aspects of antifeedants. Entomol. Exp. Appl. 31: 57–69.CrossRefGoogle Scholar
  59. 59.
    JERMY, T. 1983. Multiplicity of insect antifeedants in plants. In: D.L. Whitehead, W.S. Bowers, eds., op. cit. Reference 28, pp. 223–236.Google Scholar
  60. 60.
    APPELBAUM, S.W., Y. BIRK. 1979. Saponins. In: G.A. Rosenthal, D.H. Janzen, eds., op. cit. Reference 26, pp. 539–566.Google Scholar
  61. 61.
    LADYGINA, E.U., V.A. MAKAROVA, N.S. IGNAT’EVA. 1970. Morphological and anatomical description of Pastinaca sativa fruit and localization of the furocoumarins in them. Farmatsiya 19: 29–35.Google Scholar
  62. 62.
    STAHL, E., K.H. KUBECZKA. 1979. Uber atherische Ole der Apiaceae (Umbelliferae). VI. Untersuchungen zum Vorkommen von Chemotypen bei Pastinaca sativa L. Planta Med. 37: 49–56.CrossRefGoogle Scholar
  63. 63.
    METCALF, R.L. 1967. Mode of action of insecticide synergists. Ann. Rev. Entomol. 12: 229–256.CrossRefGoogle Scholar
  64. 64.
    CASIDA, J.E. 1970. Mixed-function oxidase involvement in the biochemistry of insecticide synergists. J. Agr. Food Chem. 18: 753–760.CrossRefGoogle Scholar
  65. 65.
    TAHORI, A.S. (ed.). 1971. Insecticide Resistance, Synergism, Enzyme Induction. Gordon and Breach, New York, 302 pp.Google Scholar
  66. 66.
    EAGLESON, C. 1942. Sesame oil as a synergist of pyrethrum insecticides. Soap and Sanit. Chem. 18: 125–127.Google Scholar
  67. 67.
    HALLER, H.L., E.R. McGOVRAN, L.D. GOODHUE, W.N. SULLIVAN. 1942. The synergistic action of sesamin with pyrethrum insecticides. J. Org. Chem. 7: 183–185.Google Scholar
  68. 68.
    DOSKOTCH, R.W., F.S. EL-FERALY. 1969. Isolation and characterization of (+) sesamin and β-cyclopyrethrosin from pyrethrum flowers. Can. J. Chem. 47: 1139–1142.Google Scholar
  69. 69.
    KRIEGER, R.I., P.P. FEENY, C.F. WILKINSON. 1971. Detoxication enzymes in the guts of caterpillars: an evolutionary answer to plant defenses? Science 172: 579–581.ADSCrossRefGoogle Scholar
  70. 70.
    MILLER, J.S., P. FEENY. 1983. Effects of benzylisoquinoline aldaloids on the larvae of polyphagous Lepidoptera. Oecología 58: 332–339.CrossRefGoogle Scholar
  71. 71.
    SCRIBER, J.M. 1983. Host-plant suitability. In: Chemical Ecology of Insects. N.J. Bell, R.T. Carde, eds.), Sinauer Associates, Sunderland, Massachusetts, pp. 159–202.Google Scholar
  72. 72.
    HARBORNE, J.B., V.H. HEYWOOD, C.A. WILLIAMS. 1969. Distribution of myristicin in seeds of the Umbelliferae. Phytochem. 8: 1729–1732.CrossRefGoogle Scholar
  73. 73.
    BERENBAUM, M. 1978. Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores. Science 201: 532–534.ADSCrossRefGoogle Scholar
  74. 74.
    BERENBAUM, M. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37: 163–179.CrossRefGoogle Scholar
  75. 75.
    BERENBAUM, M., P. FEENY. 1981. Toxicity of angular furanocoumarins to swallowtails: escalation in a coevolutionary arms race? Science 212: 927–929.ADSCrossRefGoogle Scholar
  76. 76.
    KOGAN, J., D.K. SELL, R.E. STINNER, J.R. BRADLEY, M. KOGAN. 1978. V. A Bibliography of Heliothis zea (Boddie) and H. virescens (F.) (Lepidoptera: Noctuidae). International Agricultural Publications INTSOY Series Number 17, Urbana, Illinois, 242 pp.Google Scholar
  77. 77.
    MIYAKADO, M., I. NAKAYAMA, N. OHNO, H. YOSHIOKA. 1983. Structure, chemistry and actions of the Piperaceae amids: new insecticidal constituents isolated from the pepper plant. In: Natural Products for Innovative Pest Management. ( D.L. Whitehead, ed.), Pergamon Press, New York, pp. 369–382.Google Scholar
  78. 78.
    NEWMAN, A.A. 1962. The occurrence, genesis and chemistry of the phenolic methylenedioxy ring in nature. Chem. Prod. 25: 161–166.Google Scholar
  79. 79.
    LICHTENSTEIN, E.P., J.E. CASIDA. 1963. Myristicin, an insecticide and synergist occurring naturally in the edible parts of parsnip. J. Agric. Food Chem. 11: 410–415.CrossRefGoogle Scholar
  80. 80.
    LUTHY, J., M.H. BENN. 1977. Thiocyanate formation from glucosinolates: a study of the autolysis of allylglucosinolate in Thlaspi arvense L. seed flour extracts. Can. J. Biochem. 55: 1028–1031.Google Scholar
  81. 81.
    WILKINSON, C.F. 1971. Insecticide synergists and their mode of action. In A.S. Tahori, ed., op. cit. Reference 65, pp. 117–160.Google Scholar
  82. 82.
    BOHLMANN, F. 1971. Acetylenic compounds in the Umbelliferae. Bot. J. Linn. Soc. 64: 279–291.Google Scholar
  83. 83.
    BOHLMANN, F., W. SUCROW. 1963. Natürlich vorkommende Acetylenverbindungen. In: Modern Methods of Plant Analysis, Vol. 6. ( H.F. Linskens, M.V. Tracey, eds.), Springer-Verlag, Berlin, pp. 81–108.Google Scholar
  84. 84.
    HENNESEY, D.J. 1971. The design of synergists for large scale application. In A.S. Tahori, ed., op. cit. Reference 65, pp. 161–166.Google Scholar
  85. 85.
    BERENBAUM, M. 1985. Post-ingestive effects of allelochemicals on insects, on Paracelsus and plant products. In Insect-plant Interactions. (T.A. Miller, J. Miller, eds.), Springer-Verlag, New York. Chapter 5 (in press).Google Scholar
  86. 86.
    JOHNSON, A.E., H. NURSTEN, A. WILLIAMS. 1971. Vegetable volatiles: a survey of components identified: Part II. Chem. Ind. 71: 1212–2222Google Scholar
  87. 87.
    BROWER, L.P., J.N. SEIBER, C.J. NELSON, S.P. LYNCH, P.M. TUSKES. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies, Danaus plexippus reared on the milkweed, Asclepias eriocarpa in California. J. Chem. Ecol. 8: 579–633.CrossRefGoogle Scholar
  88. 88.
    MURRAY, R.D.H., J. MENDEZ, S.A. BROWN. 1982. The Natural Coumarins. John Wiley and Sons Ltd., Chichester.Google Scholar
  89. 89.
    WATERMAN, P.G. 1975. Alkaloids of the Rutaceae: their distribution and systematic significance. Biochem. Syst. Ecol. 3: 149–180.CrossRefGoogle Scholar
  90. 90.
    ZUCKER, W.V. 1983. Tannins: does structure determine function? An ecological perspective. Am. Nat. 121: 335–365.CrossRefGoogle Scholar
  91. 91.
    SCOTT, B.R., M.A. PATHAK, G.R. MOHN. 1976. Molecular and genetic basis of furanocoumarin reactions. Mutat. Res. 39: 29–74.CrossRefGoogle Scholar
  92. 92.
    PATHAK, M.A., L.R. WORDEN, K.D. KAUFMAN. 1967. Effect of structural alterations on the photosensitizing potency of furocoumarins (psoralens) and related compounds. J. Invest. Dermatol. 48: 103–110.Google Scholar
  93. 93.
    BROWN, S.A. 1979. Biochemistry of the coumarins. Rec. Adv. Phytochem. 12: 249–286.Google Scholar
  94. 94.
    BERENBAUM, M., A.R. ZANGERL, J.K. NITAO. 1984. Furanocoumarins in seeds of wild and cultivated parsnip (Pastinaca sativa). Phytochem. 23: 1809–1810.CrossRefGoogle Scholar
  95. 95.
    MUSAJO, L., G. RODIGHIERO. 1962. The skin-photosensitizing furocoumarins. Experientia 18: 153–200.CrossRefGoogle Scholar
  96. 96.
    YAJIMA, T., N. KATO, K. MUNAKATA. 1977. Isolation of insect anti-feeding principles in Orixa japonica Thunb. Agric. Biol. Chem. 41: 1263–1268.CrossRefGoogle Scholar
  97. 97.
    CHAMPAGNE, D.T., J.T. ARNASON, B.J.R. PHILOGENE, J. LAM. 1984. Phototoxic effects of natural poly-acetylenes and thiophenes on insect herbivores. Phytochem. Soc. No. Am. Newsletter 24: 28.Google Scholar
  98. 98.
    KUBO, I. 1984. Multichemical insect and fungal resistance in plants. Rec. Adv. Phytochem. 19: 171–194.Google Scholar
  99. 99.
    JANZEN, D.H. 1973. Community structure of secondary compounds in nature. Pure Appl. Chem. 34: 529–538.Google Scholar
  100. 100.
    CARDE, R.T., T.C. BAKER. 1983. Sexual communication with pheromones. In W.J. Bell, R.T. Carde, eds., op. cit. Reference 71, pp. 355–524.Google Scholar
  101. 101.
    BLUM, M. (ed.). 1981. Chemical Defenses of Arthropods. Academic Press, New York, 562 pp.Google Scholar
  102. 102.
    SEIGLER, D.S. 1977. Primary roles for secondary compounds. Biochem. Syst. Ecol. 5: 195–199.CrossRefGoogle Scholar
  103. 103.
    CRANE, L. 1963. Household Stories from the Collection of Brothers Grimm. Dover Publications, New York, 269 pp.Google Scholar
  104. 104.
    KUBECZKA, K.H., E. STAHL. 1975. Uber atherische file der Apiaceae (Umbelliferae). I. Das Würzelöl von Pastinaca sativa. Planta Medica 27: 235–241CrossRefGoogle Scholar
  105. 105.
    HEGNAUER, R. 1964–1973. Chemotaxonomie der Pflanzen. 6 Volumes, Birkhauser Verlag, Basel.Google Scholar
  106. 106.
    STECK, W., B.K. BAILEY. 1969. Characterization of plant coumarins by combined gas chromatography, ultraviolet absorption spectroscopy and NMR analysis. Can. J. Chem. 47: 3577–3583.CrossRefGoogle Scholar
  107. 107.
    IVIE, G.W., D.L. HOLT, M.C. IVEY. 1981. Natural toxicants in human foods; psoralens in raw and cooked parsnip root. Science 213: 909–910.ADSCrossRefGoogle Scholar
  108. 108.
    KLOCKE, J.A., B. CHAN. 1982. Effects of cotton condensed tannin on feeding and digestion in the cotton pest, Heliothis zea. J. Insect Physiol. 28: 911–915.CrossRefGoogle Scholar
  109. 109.
    KOUL, 0. 1982. Insect feeding deterrents in plants. Indian Rev. Life Sci. 2: 97–125.Google Scholar
  110. 110.
    KUBO, I., J. KLOCKE. 1983. Isolation of phytoecdysones as insect ecdysis inhibitors and feeding deterrents. In: Plant Resistance to Insects. (P. Hedin, ed.), A.C.S. Symposium Series 208, American Chemical Society, Washington, D.C., pp. 329–346.CrossRefGoogle Scholar
  111. 111.
    RAUSHER, M.D. 1979. Coevolution in a Simple Herbivore-Plant System. Doctoral dissertation, Cornell University, Ithaca, New York.Google Scholar
  112. 112.
    WAISS, A.C., B. CHAN, C. ELIGER, D. DREYER, R. BINDER, R. GUELDNER. 1981. Insect growth inhibitors in crop plants. Bull. Entomol. Soc. Am. 27: 217–221.Google Scholar
  113. 113.
    WISDOM, C., J.T. SMILEY, E. RODRIGUEZ. 1983. Toxicity and deterrency of sesquiterpene lactones and chromenes to the corn earworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 76: 993–998.Google Scholar
  114. 114.
    WILKINSON, C.F. 1973. Insecticide synergism. Chemtech 56: 492–497.Google Scholar
  115. 115.
    GOODWIN, T.W., E.I. MERCER. 1972. Introduction to Plant Biochemistry. 1st Edition, Pergamon Press, New York.Google Scholar
  116. 116.
    KARRER, W. 1958. Konstitution und Vorkommen der Organischen Pflanzenstoffe. Birkhauser Verlag, Basel.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • May Berenbaum
    • 1
  1. 1.Department of EntomologyUniversity of IllinoisUrbanaUSA

Personalised recommendations