Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 19))

  • 174 Accesses

Abstract

Plant defense against microorganisms consists of a variety of preformed barriers and dynamic responses. Numerous secondary metabolites are present in sufficient concentrations to be toxic and useful as chemical barriers. Structural materials, such as the cuticle and cell walls, are effective as physical barriers to invasion. Preformed barriers require no plant response to be effective deterrents to colonization by microorganisms. Plants can, however, also respond defensively to the presence of some microorganisms. These active responses encompass a complex of strategies to minimize the impact of the invading microorganism. But, active defenses must be triggered to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KEEN, N.T. 1982. Specific recognition in gene-for-gene host-parasite systems. Adv. Plant Pathol. 1: 35–82.

    Google Scholar 

  2. PAXTON, J.D. 1981. Phytoalexins—a working definition. Phytopathol. Z. 101: 106–109.

    Article  Google Scholar 

  3. BAILEY, J.A., J.W. MANSFIELD, eds. 1982. Phytoalexins. Blackie, Glasgow/London.

    Google Scholar 

  4. BAILEY, J.A. 1974. The relationship between symptom expression and phytoalexin concentration in hypocotyls of Phaseolus vulgaris infected with Colletotrichum lindemuthianum. Physiol. Plant Pathol. 4: 477–488.

    Article  Google Scholar 

  5. BAILEY, J.A., P.M. ROWELL, G.M. ARNOLD. 1980. The temporal relationship between host cell death, phytoalexin accumulation and fungal inhibition during hypersensitive reactions of Phaseolus vulgaris to Colletotrichum lindemuthianum. Physiol. Plant Pathol. 17: 329–339.

    Google Scholar 

  6. MOESTA, P., H. GRISEBACH. 1982. L-2-Aminoxy-3phenylpropionic acid inhibits phytoalexin accumulation in soybean with concomitant loss of resistance against Phytophthora megasperma f.sp. glycinea. Physiol. Plant Pathol. 21: 65–70.

    Article  Google Scholar 

  7. HAHLBROCK, K., J. CHAPPELL, D.N. KUHN, M. WALTER, E. SCHMELZER. 1984. Induction of resistance-related mRNAs by UV light or fungal elicitor in cultured plant cells. In: Cellular and Molecular Biology of Plant Stress, UCLA Symposia on Molecular and Cellular Biology, New Series. (J.L. Key, T. Kosuge, eds.), Vol. 22, Alan R. Liss, Inc., New York, New York (in press).

    Google Scholar 

  8. EBEL, J., W.E. SCHMIDT, R. LOYAL. 1984. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonia-lyase and chalcone synthase mRNAs and correlation with phytoalexin accumulation. Arch. Biochem. Biophys. 232: 240–248.

    Article  Google Scholar 

  9. ALBERSHEIM, P., B.S. VALENT. 1978. Host-pathogen interactions in plants. Plants when exposed to oligosaccharides of fungal origin, defend themselves by accumulating antibiotics. J. Cell Biol. 78: 627–643.

    Article  Google Scholar 

  10. BOLLER, T. 1984. Induction of hydrolases as a defense reaction against pathogens. In J.L. Key, T. Kosuge, eds., op. cit. Reference 7 (in press).

    Google Scholar 

  11. RYAN, C.A. 1984. Pectic fragments regulate the expression of proteinase inhibitor genes in tomato plants. In J.L. Key, T. Kosuge, eds., op. cit. Reference 7 (in press).

    Google Scholar 

  12. GEBALLE, G.T., A.W. GALSTON. 1982. Wound-induced resistance to cellulase in oat leaves. Plant Physiol. 70: 781–787.

    Article  Google Scholar 

  13. LOEBENSTEIN, G., S. SPIEGEL, A. GERA. 1982. Localized resistance and barrier substances. In: Active Defense Mechanisms in Plants. ( R.K.S. Wood, ed.), Plenum Press, New York. pp. 211–230.

    Chapter  Google Scholar 

  14. VANCE, C.P., T.K. KIRK, R.T. SHERWOOD. 1980. Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18: 259–288.

    Article  Google Scholar 

  15. ESQUERRE-TUGAYE, M.-T., C. LaFITTE, D. MAZAU, A. TOPPAU, A. TOUZE. 1979. Cell surfaces in plant-microorganism interactions II, Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanism. Plant Physiol. 64: 320–326.

    Article  Google Scholar 

  16. ESQUERRE-TUGAYE, M.-T., D. MAZAU, B. PELISSIER, D. ROBY, D. RUHEAU, A. TOPPAN. 1984. Induction by elicitors and ethylene of proteins associated with the defense of plants. In: J.L. Key, T. Kosuge, eds., op. cit. Reference 7 (in press).

    Google Scholar 

  17. PEARCE, R.B., J.P. RIDE. 1982. Chitin and related compounds as elicitors of the lignification response in wounded wheat leaves. Physiol. Plant Pathol. 20: 199–123.

    Article  Google Scholar 

  18. WALTER-SIMMONS, M., L. HADWIGER, C.A. RYAN. 1983. Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phyto.alexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem. Biophys. Res. Commun. 110: 194–199.

    Article  Google Scholar 

  19. DARVILL, A.G., P. ALBERSHEIM. 1984. Phytoalexins and their elicitors — A defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243–275.

    Article  Google Scholar 

  20. CRUICKSHANK, I.A.M., D.R. PERRIN. 1968. The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola. Life Sci. 7: 449–458.

    Article  Google Scholar 

  21. De WIT, P.J.G., E. KODDE. 1981. Further characterization and cultivar-specificity of glycoprotein elicitors from culture filtrates and cell walls of Cladosporium fulvum (syn. Fulvia fulva). Physiol. Plant Pathol. 18: 297–314.

    Google Scholar 

  22. De WIT, P.J.G., G. SPIKMAN. 1982. Evidence for the occurrence of race and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions of Cladosporium fulvum and tomato. Physiol. Plant Pathol. 21: 1–11.

    Article  Google Scholar 

  23. KEEN, N.T., M. LEGRAND. 1980. Surface glycoproteins. Evidence that they may function as the race-specific phytoalexin elicitors of Phytophthora megasperma f.sp. glycinea. Physiol. Plant Pathol. 17: 175–192.

    Article  Google Scholar 

  24. LEE, S.-C., C.A. WEST. 1981. Polygalacturonase from Rhizopus stolonifer, and elicitor of casbene synthétase activity of castor bean (Ricinus communis L.) seedlings. Plant Physiol. 67: 633–639.

    Article  Google Scholar 

  25. DAVIS, K.R., G.D. LYON, A. DARVILL, P. ALBERSHEIM. 1982. A polygalacturonic acid lyase isolated from Erwinia carotovora is an elicitor of phytoalexins in soybean. Plant Physiol. 69: 142.

    Google Scholar 

  26. ALBERSHEIM, P. 1984. Complex carbohydrates regulate stress physiology as well as growth and development. In: J.L. Key, T. Kosuge, eds., op. cit. Reference 7 (in press).

    Google Scholar 

  27. AYERS, A.R., J. EBEL, F. FINELLI, N. BERGER, P. ALBERSHEIM. 1976. Host-pathogen interactions IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extra-cellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 57: 751–759.

    Article  Google Scholar 

  28. AYERS, A.R., J. EBEL, B. VALENT, P. ALBERSHEIM. 1976. Host-pathogen interactions X. Fractionation and biological activity of an elicitor isolated from the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol. 57: 760–765.

    Article  Google Scholar 

  29. OSSOWSKI, P., A. PILOTTI, P. GAREGG, P. LINDBERG. 1983. Synthesis of a branched hepta-and octasaccharide with phytoalexin-elicitor activity. Angew. Chem., Int. Ed. Engl. 22: 793–795.

    Article  Google Scholar 

  30. BORCH R.F., M.D. BERNSTEIN, H.D. DURST. 1971. The cyanohydriborate anion as a selective reducing agent. J. Amer. Chem. Soc. 93: 2897–2904.

    Article  Google Scholar 

  31. GOODELL, J.J., P. DeANGELIS, A.R. AYERS. 1984. Immunochemical identification of antigens involved in plant/pathogen interactions. In: J.L. Key, T. Kosuge, eds., op. cit. Reference 7 (in press).

    Google Scholar 

  32. PETERS, B.M., D.H. CRIBBS, D.A. STELZIG. 1978. Agglutination of plant protoplasts by fungal cell wall glucans. Science 201: 364–365.

    Article  ADS  Google Scholar 

  33. DOKE, N., K. TOMIYAMA. 1980. Effect of hyphal wall components of Phytophthora infestans on protoplasts of potato tuber tissues. Physiol. Plant Pathol. 16: 169–176.

    Article  Google Scholar 

  34. MARCAN, H., M.C. JARVIS, J. FRIEND. 1979. Effect of methyl glycosides and oligosaccharides on cell death and browning of potato tuber discs induced by mycelial components of Phytophthora infestans. Physiol. Plant Pathol. 14: 1–9.

    Article  Google Scholar 

  35. NOZUE, M., K. TOMIYAMA, N. DOKE. 1979. Evidence for adherence of host plasmalemma to infecting hyphae of both compatible and incompatible races of Phytophtora infestans. Physiol. Plant Pathol. 15: 111–115.

    Article  Google Scholar 

  36. YOSHIKAWA, M., N.T. KEEN, M.-C. WANG. 1983. A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol. 73: 497–506.

    Article  Google Scholar 

  37. HALL, J.L. 1983. Plasma membranes. In: Isolation of Membranes and Organelles from Plant Cells. ( J.L. Hall, A.L. Moore, eds.), Academic Press, London, New York, pp. 55–81.

    Google Scholar 

  38. DAY P.R. 1974. Genetics of Host-Parasite Interactions, W.H. Freeman, San Francisco, California, 238 pp.

    Google Scholar 

  39. AYERS, A.R., B. VALENT, J. EBEL, P. ALBERSHEIM. 1976. Host-pathogen interactions XI. Composition and structure of wall released elicitor factions. Plant Physiol. 57: 766–774.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ayers, A.R., Goodell, J.J., DeAngelis, P.L. (1985). Plant Detection of Pathogens. In: Cooper-Driver, G.A., Swain, T., Conn, E.E. (eds) Chemically Mediated Interactions between Plants and Other Organisms. Recent Advances in Phytochemistry, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9658-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9658-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9660-5

  • Online ISBN: 978-1-4757-9658-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics