MHC Genes, Chemosignals, and Genetic Analyses of Murine Social Behaviors

  • Stephen Clark Maxson


In many ways, behavior genetics is a dual discipline (Fuller and Thompson, 1978), and two types of behavior genetics are described in this section. These are labeled as Type I and Type II behavior genetics.


Congenic Strain Chromosomal Mapping Behavior Genetic Recombinant Inbred Strain Odor Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boyse, E. A., Beauchamp, G. K., Bard, J., and K. Yamazaki, 1990, Behavior and the major histocompatibility complex of the mouse, in: “Psvchoneuroimmunology, 2nd ed.,” R. Ader, D. L. Felten, and N. Cohen, eds., Academic Press, New York.Google Scholar
  2. Carlier, M. and Roubertoux, P., 1986, Differences between CBA/H and NZB mice on intermale aggression, in: “Genetic Approaches to Behaviour,” J. Medioni and G. Vaysse, eds., Privat T.E.C., Toulouse.Google Scholar
  3. Denenberg, V. H., Gaulin-Kremer, E., Gandelman, R., and Zarrow, M. X., 1973, The development of standard stimulus animals for mouse (Mus musculus) aggression testing by means of olfactory bulbectomy. Anim. Behay., 47:1.Google Scholar
  4. Didier-Erickson, A., Maxson, S. C., and Ogawa, S., 1989, Differential effects of the DBA1 and C57BL10 Y chromosomes on the response to social or other stimuli for offense, Behay. Genet., 5:675.CrossRefGoogle Scholar
  5. Eklund, A., Egid, K., and Brown, J., 1991, The major histocompatibility complex and mate choice in male mice of two congenic strains, in: “Chemical Signals in Vertebrates VI,” R.L. Doty and D. Müller-Schwarze, eds., Plenum, New York.Google Scholar
  6. François, M.-H., 1990, Region chromosomique H-2 et aptitude a provoquer des comportements d’agression chez la souris male. These pour le Doctorat de l’Université Pierre et Marie Curie (Paris V I ), Faculte de Medicine Pitie-Salpetriere, Paris, France.Google Scholar
  7. François, M.-H., Nosten-Bertrand, M., Roubertoux, P. L., Kottler, M.-L., and Degrelle, H., 1990. Opponent strain effect on eliciting attacks in NZB mice: Physiological correlates, Physiol. Behay., 47:1181.CrossRefGoogle Scholar
  8. Fuller, J. L. and Thompson, W. R., 1987, Foundations of Behavior Genetics,“ C. V. Mosby Co., St. Louis.Google Scholar
  9. Galton, F., 1869, “Hereditary Genius: An Inquiry into Its Laws and Consequences,” Macmillan, London.CrossRefGoogle Scholar
  10. Galton, F., 1876, The history of twins as a criterion of the relative powers of nature and nurture, Roy. Anth. Inst. of Great Britain and Ireland, 6:391.Google Scholar
  11. Ginsburg, B. E., 1958, Genetics as a tool in the study of behavior, Perspect. Biol. Med., 1:397.Google Scholar
  12. Ingersoll, D. W., 1986, Latent aggression-promoting properties of mouse bladder urine activated by heat, Behay. Neurosci., 100:783.CrossRefGoogle Scholar
  13. Ingersoll, D. W., Morley, K. T., Benvenga, M., and Hands, C., 1986, An accessory sex gland aggression-promoting chemosignal in mice, Behay. Neurosci., 100:777.CrossRefGoogle Scholar
  14. Ivanyi, P., Hampl, R., Starka, L., and Mickova, M., 1972, Genetic association between H-2 gene and testosterone metabolism in mice, Nature, 238: 280.Google Scholar
  15. Ivanyi, P., Gregorova, S., Mickova, M., Hampl, R., and Starka, L., 1973, Genetic association between histocompatibility gene (H-2) and androgen metabolism in mice. Transplant Proc., V: 189.Google Scholar
  16. Jinks, J. L. and Broadhurst, P. L., 1974, How to analyse the inheritance of behaviour in animals - the biometrical approach, in: The Genetics of Behaviour,“ J.H.F. van Abeelen, ed., North Holland, Amsterdam.Google Scholar
  17. Jutley, J. K. and Stewart, A. D., 1985, Genetic analysis of the Y chromosome of the mouse: Evidence for two loci affecting androgen metabolism, Genet. Res. Camb., 47:29.CrossRefGoogle Scholar
  18. Klein, J., 1981, The histocompatibility-2 (H-2) complex, in: “The Mouse in Biomedical Research: Vol. I, History, Genetics, and Wild Mice,” H. L. Foster, J. D. Small, and J. G. Fox, eds., Academic Press, New York.Google Scholar
  19. Koller, B. H., Marrack, P., Kappler, J. W., and Smithies, 0., 1990, Normal development of mice deficient in B2, MHC class I proteins and CD8+ T cells, Science, 248: 1227.Google Scholar
  20. Lander, E. S. and Botstein, D., 1989, Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps, Genetics, 121: 185.PubMedGoogle Scholar
  21. Lee, C-T. and Ingersoll, D. W., 1983, Pheromonal influence on aggressive behavior, in: “Hormones and Aggressive Behavior,” B. B. Svare, ed., Plenum, New York.Google Scholar
  22. Luszyk, D., Eggeret, F., Uharek, L., Müller-Ruchholtz, W., and Ferstl, R., 1991, The influence of the homatopoietic system on the production of MHC-related odors in mice, in: “Chemical Signals in Vertebrates VI,” R. L. Doty and D. Müller-Schwarze, eds., Plenum, New York.Google Scholar
  23. Maxson, S. C., 1992a, Methodological issues in genetic analyses of an agonistic behavior (offense) in male mice, in: “Techniques for the Genetic Analysis of Brain and Behavior: Focus on the Mouse,” D. Goldowitz, R. E. Wimer, and D. Wahlsten, eds., Elsevier Science Publishers, Amsterdam.Google Scholar
  24. Maxson, S. C., 1992b, Potential genetic models of aggression and violence in males, in: “Genetically Defined Animal Models of Neurobehavioral Dysfunction,” P. Driscoll, ed., Birkhäuser-Boston, Cambridge, MA.Google Scholar
  25. Maxson, S. C., Shrenker, P., and Vigue, L. C., 1983, Genetics, hormones, and aggression, in: “Hormones and Aggressive Behavior,” B. B. Svare, ed., Plenum, New York.Google Scholar
  26. Maxson, S. C., Didier-Erickson, A., and Ogawa, S., 1989, The Y chromosome, social signals, and offense in mice, Behay. Neural Biol., 52:251.CrossRefGoogle Scholar
  27. Novotny, M., Harvey, S., Jemiolo, B., and Alberts, J., 1985, Synthetic pheromones that promote inter-male aggression in mice, Proc. Natl. Acad. Sci. USA, 82:2059.CrossRefGoogle Scholar
  28. Paterson, A. H., Damon, S Hewitt, J. D., Zamir, D., Rabinowitch, H. D., Lincoln, S. E., Lander, E. S., and Tanksley, S. D., 1991, Mendelian factors underlying quantitative traits in tomato: comparison across species, generation, and environments, Genetics, 127: 181.PubMedGoogle Scholar
  29. Pla, M., Rocca, A., Gillet, D., Villette, J.-M., Fiet, J., and Degos, L., 1987, Involvement of the H-2 complex in steroid hormone metabolism, in: “H-2 Antigens: Genes, Molecules, Function,” C. S. Davis, ed., Plenum, New York.Google Scholar
  30. Plomin, R., 1986, “Development, Genetics, and Psychology,” Lawrence Erlbaum, Hillsdale, N.J.Google Scholar
  31. Potts, W., Manning, C. J., and Wakeland, E. K., 1991, Strong MHC-based mating preferences in semi-natural populations of Mus: Evidence that they function primarily to avoid inbreeding, in: “Chemical Signals in Vertebrates VI,” R. L. Doty and D. Müller-Schwarze, eds., Plenum, New York.Google Scholar
  32. Schellinck, H., and Brown, R., 1991, Why does germ free rearing eliminate odours of individuality in rats but not in mice,“ in: ”Chemical Signals in Vertebrates VI,“ R. L. Doty and D. Müller-Schwarz, eds., Plenum, New York.Google Scholar
  33. Schwende, F. J., Jorgenson, J. W., and Novotny, M., 1984, Possible chemical basis for histocompatibility-related mating preference in mice, J. Chem. Ecol., 10:1603.Google Scholar
  34. Scott, J.P., 1983, Genetics of social behavior in nonhuman animals, in: “Behavior Genetics: Principles and Application,” J. L. Fuller and E. C. Simmel, eds., Lawrence Erlbaum Associates, Hillsdale, N.J.Google Scholar
  35. Tolman, E. C., 1924, The inheritance of maze learning in rats, J. Comp. Psychol., 42:58.Google Scholar
  36. Tsuchiya, H., Yamazaki, K., Singer, A. G., and Beauchamp, G. K., 1991, Chemical characterization of olfactory signals of MHC type, in: Chemical Signals in Vertebrates VI,“ R. L. Doty and D. Müller-Schwarze, eds., Plenum, New York.Google Scholar
  37. Wakeland, E., 1991, MHC molecules and olfactory signalling: Structural constraints on simple explanations, in: “Chemical Signals in Vertebrates VI,” R. L. Doty and D. Müller-Schwarz, eds., Plenum, New York.Google Scholar
  38. Yamazaki, K., Beauchamp, G. K., Bard, J., and Boyse, E. A., 1990, Chemosensory identity and the Y chromosome, Behay. Genet., 20:157.Google Scholar
  39. Yamazaki, K., Beauchamp, G. K., Bard, J., Thomas, L., and Boyse, E. A., 1991, MHC control of odortype in the mouse, in: “Chemical Signals in Vertebrates VI,” R. L. Doty and D. Müller—Schwarze, eds., Plenum, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Stephen Clark Maxson
    • 1
  1. 1.Biobehavioral Sciences Graduate Degree Program Department of PsychologyThe University of ConnecticutStorrsUSA

Personalised recommendations