Interactions among the MHC, Diet and Bacteria in the Production of Social Odors in Rodents

  • Richard E. Brown
  • Heather M. Schellinck


Many mammals can be identified by their individual odors or “olfactory fingerprints” (Brown, 1979) and these individual odors have been linked to genetic differences at the major histocompatibility complex (MHC) in both laboratory mice (Yamazak et al., 1991) and rats (Brown et al., 1987). The MHC regions of the mouse and rat have a similar organization (Brown et al., 1990), each having three different regions, each of which contributes to the individual’s body odor (Brown et al., 1989; Yamazaki et al., 1990a). The MHC, however, is not the only genetic region which contributes to individual odors. The sex chromosomes and the background genes (i.e., non-MHC regions) also contribute to the individual odors of mice (Yamazaki et al., 1986; Beauchamp et al., 1990). Since the class I MHC antigens are found in the urine of rats (Singh et al., 1987, 1988; Roser et al., 1991), we hypothesized that the class I antigens themselves might be the source of the odor of individuality, but this is not the case as removal of the class I antigen from the urine of rats did not remove the individuality signal (Brown et al., 1987). While the intact MHC class I antigens do not appear to be the source of the odor of individuality, it is possible that volatile fragments of these antigens or other volatiles attached to these antigens may provide individually unique odors in the urine.


Major Histocompatibility Complex Cholic Acid Bacterial Flora Major Histocompatibility Complex Region Major Histocompatibility Complex Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albone, E.S., 1984, “Mammalian Semiochemistry”, Wiley, New York.Google Scholar
  2. Barnett, S.A. and Sandford, M.H.R., 1982, Decrements in “social stress” among wild Rattus rattus treated with antibiotic. Physiol. Behay., 28: 483.CrossRefGoogle Scholar
  3. Beauchamp, G.K., Yamazaki, K., Duncan, H., Bard, J., and Boyse, E.A., 1990, Genetic determination of individual mouse odour, in “Chemical Signals in Vertebrates 5,” D.W. MacDonald, et al., eds., Oxford University Press, Oxford.Google Scholar
  4. Bedichek, R., 1960, “The Sense of Smell,” Michael Joseph, London.Google Scholar
  5. Borud, O., Midtvedt, T., and Gjessing, L.R., 1973, Phenolic metabolites in urine and feces from rats given radioactive 14C-L-DOPA, Acta Pharm. Toxicol., 33: 308.CrossRefGoogle Scholar
  6. Boyce, M.S., 1990, The red queen visits sage grouse leks. Amer. Zool., 30: 263.Google Scholar
  7. Brown, R.E., 1979, Mammalian social odours, Adv. Study Behay., 10: 103.CrossRefGoogle Scholar
  8. Brown, R.E., Roser, B., and Singh, P.B., 1989, Class I and class II regions of the major histocompatibility complex both contribute to individual odors in congenic inbred strains of rats, Behay. Genet., 19: 659.CrossRefGoogle Scholar
  9. Brown, R.E., Roser, B., and Singh, P.B., 1990, The MHC and individual odours in rats, in: “Chemical Signals in Vertebrates 5,” D.W. Mac Donald et al., eds., Oxford University Press, Oxford.Google Scholar
  10. Brown, R.E., Singh, P.B., and Roser, B., 1987, The major histocompatibility complex and the chemosensory recognition of individually in rats, Physiol. Behay., 40: 65.CrossRefGoogle Scholar
  11. Brown, R.E. and Wisker, L., 1991, Effects of maternal diet and MHC differences on the attractiveness of the maternal odor in H-2 con-genic mice (unpublished manuscript).Google Scholar
  12. Gustafsson, B.E., Norman, A., and Sjovall, J., 1960, Influence of E. coli infection on turnover and metabolism of cholic acid in germ-free rats, Arch. Biochem. Biophysics, 91: 93.CrossRefGoogle Scholar
  13. Hamilton, W.D. and Zuk, M., 1982, Heritable true fitness and bright birds: A role for parasites? Science, 218: 384.PubMedCrossRefGoogle Scholar
  14. Holdenman, L.V., Good, I.J., and Moore, W.E.C., 1976, Human fecal flora: Variation in bacterial composition within individuals and a possible effect of emotional stress, Appl. Env. Microbiol., 31: 359Google Scholar
  15. Holland, M., Rhodes, G., DalleAve, M., Wiesler, D., and Novotny, M., 1983, Urinary profiles of volatile and acid metabolites in germ-free and conventional rats, Life Sciences, 32: 787.PubMedCrossRefGoogle Scholar
  16. Howard, J.C., 1977, H-2 and mating preferences, Nature, 266: 406.CrossRefGoogle Scholar
  17. Leon, M., 1974, Maternal pheromone, Physiol. Behay., 13: 441.CrossRefGoogle Scholar
  18. Leon, M., 1975, Dietary control of maternal pheromone in the lactating rat, Physiol. Behay., 14: 311.CrossRefGoogle Scholar
  19. Milinski, M. and Bakker, T.C.M., 1990, Female sticklebacks use male coloration in mate choice and hence avoid parasitized males, Nature, 344: 330.CrossRefGoogle Scholar
  20. Moltz, H. and Lee, T.M., 1981, The maternal pheromone of the rat: Identity and functional significance, Physiol. Behay., 26: 301.CrossRefGoogle Scholar
  21. Peppercorn, M.A. and Goldman, P., 1972, Caffeic acid metabolism by gnotobiotic rats and their intestinal bacteria, Proc. Nat. Acad. Sci. USA, 69: 1413.PubMedCrossRefGoogle Scholar
  22. Porter, R.H. and Doane, H.M., 1977, Dietary-dependent cross-species similarities in maternal chemical cues, Physiol. Behay., 19: 129.CrossRefGoogle Scholar
  23. Potts, W.K. and Wakeland, E.K., 1990, Evolution of diversity at the Major Histocompatability Complex, Tr. Ecol. Evol., 5: 181.CrossRefGoogle Scholar
  24. Rosebury, T., 1969, “Life on Man, ” Martin Secker and Warburg, London.Google Scholar
  25. Roser, B., Brown, R.E., and Singh, P.B., 1991, Excretion of transplantation antigens as signals of genetic individuality, in: “Chemical Senses. Volume 3,” C.J. Wysocki and M.R. Kare, eds., Marcel Dek ker, New York.Google Scholar
  26. Sannomiya, P., Craig, R.A., Clewell, D.B., Suzuki, A., Fujino, M., Till, G.O., and Marasco, W.A., 1990, Characterization of a class of non formylated Enterococcus faecalis-derived neutrophil chemotactíc peptides: The sex pheromones. Proc. Nat. Acad. Scí. USA, 87: 66.PubMedCrossRefGoogle Scholar
  27. Schellinck, H.M., Brown, R.E., and Slotnick, B.M., 1991, Training rats to discriminate between the odors of individual conspecifics, Anim. Learn. Behay., in press.Google Scholar
  28. Schellinck, H.M., West, A.M., and Brown, R.E., 1991, The ability of rats to discriminate between the urine odors of genetically identical mice on different diets (unpublished manuscript).Google Scholar
  29. Singh, P.B., Brown, R.E., and Roser, B., 1987, MHC antigens in urine as olfactory recognition cues, Nature, 327: 161.PubMedCrossRefGoogle Scholar
  30. Singh, P.B., Brown, R.E., and Roser, B., 1988, Class I transplantation antigens in solution in body fluids and in the urine: Individuality signals to the environment, J. Exp. Med., 168: 195.PubMedCrossRefGoogle Scholar
  31. Singh, P.B., Herbert, J., Roser, B., Arnott, L., Tucker, D.K., and Brown, R.E., 1990, Rearing rats in a germ-free environment eliminates their odors of individuality, J. Chem. Ecol., 16: 1667.CrossRefGoogle Scholar
  32. Skeen, J.T. and Thiessen, D.D., 1977, Scent of gerbil cuisine, Physiol. Behay., 19: 11.CrossRefGoogle Scholar
  33. Smith, H.W., 1965, The development of the flora of the alimentary tract in young animals, J. Path. Bact., 90: 495.PubMedCrossRefGoogle Scholar
  34. Van de Merwe, J.P., Stegeman, J.H., and Hazenberg, M.P., 1983, The resident faecal flora is determined by genetic characteristics of the host. Implications for Crohn’s disease? Antonie van Leeuwenhock, 49: 119.CrossRefGoogle Scholar
  35. Van der Waaíj, D., 1984, The immunoregulation of the intestinal flora: Experimental investigations on the development and the composition of the microflora in normal and thymusless mice, Microecol. Therapy, 14: 63.Google Scholar
  36. Yamazaki, K., Beauchamp, G.K., Bard, J. and Boyse, E.A., 1990a, Single MHC gene mutations alter urine odour constitution in mice, in: “Chemical Signals in Vertebrates 5,” D.W. MacDonald, D. Muller-Schwarze, and S.E. Natynczuk, eds., Oxford University Press, Oxford.Google Scholar
  37. Yamazaki, K., Beauchamp, G.K., Bard, J., Boyse, E.A., and Thomas, L., 1991, Chemosensory identity and immune function in mice, in: “Chemical Senses. Volume 3,” C.J. Wysocki and M.R. Kare, eds., Marcel Dekker, New York.Google Scholar
  38. Yamazaki, K., Beauchamp, G.K., Imai, Y., Bard, J., Phelan, S.P., Thomas, L., and Boyse, E.A., 1990b, Odortypes determined by the major histo compatibility complex in germfree mice, Proc. Natl. Acad. Sci. USA, 87: 8413.PubMedCrossRefGoogle Scholar
  39. Yamazakí, K., Beauchamp, G.K., Matsuzaki, O., Bard, J., Thomas, L., and Boyse, E.A., 1986a, Participation of the muríne X and Y chromosomes in genetically determined chemosensory identity, Proc. Natl Acad. Sci. USA 83: 4438.PubMedCrossRefGoogle Scholar
  40. Zuk, M., Johnson, K., Thornhill, R., and Ligon, J.D., 1990, Parasites and male ornaments in free-ranging and captive red jungle fowl, Behaviour, 114: 332.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Richard E. Brown
    • 1
  • Heather M. Schellinck
    • 1
  1. 1.Department of PsychologyDalhousie UniversityHalifaxCanada

Personalised recommendations